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A B S T R A C T   

Health inequalities are globally widespread due to the regional socioeconomic inequalities. Myocardial infarc
tion (MI) is a leading health problem causing deaths worldwide. Yet medical services for it are often inequitably 
distributed by region. Moreover, studies concerning MI’s potential spatial risk factors generally suffer from 
difficulties in focusing on too few factors, inappropriate models, and coarse spatial grain of data. To address these 
issues, this paper integrates registered 1098 MI cases and urban multi-source spatio-temporal big data, and 
spatially analyses the risk factors for MI severity by applying an advanced interpretable model, the random forest 
algorithm (RFA)-based SHapley Additive exPlanations (SHAP) model. In addition, a community-scale model 
between spatio-temporal risk factors and MI cases is constructed to predict the MI severity of all communities in 
Wuhan, China. The results suggest that those risk factors (i.e., age of patients, medical quality, temperature 
changes, air pollution and urban habitat) affect the MI severity at the community scale. We found that Wuhan 
residents in the downtown area are at risk for high MI severity, and the surrounding suburb areas show a donut- 
shape pattern of risk for medium-to-high MI severity. These patterns draw our attention to the impact of spatial 
environmental risk factors on MI severity. Thus, this paper provides three recommendations for urban planning 
to reduce the risk and mortality from severe MI in the aspect of policy implication.   

1. Introduction 

Improving people’s average health and reducing health inequalities 
are humanly desirable. Currently, MI is the leading health problem 
causing cases of death worldwide (White and Chew, 2008). Acute MI is 
defined as myocardial necrosis caused by acute, sustained ischemia and 
hypoxia in the coronary arteries (W.H.O. 1988). Nearly 16 million 
people worldwide suffered from MI in 2015 (Vos et al. 2016). And 
previous studies found that regional differences often exist in the inci
dence of the disease. It is most common in developed countries with 
good welfare, where the mortality rate for ST-segment elevation MI is 
around 10% (Members et al. 2012). However, it has also been shown 

that the risk of death from cardiovascular disease (CVD) tends to be 
lower in areas of better socio-economic status, i.e., in areas with greener 
housing and closer to healthcare services (Chen et al. 2020; Widimský 
et al. 2003). Thus, it is imperative to examine the potential risk factors 
behind MI severity in order to protect residents’ health and reduce 
mortality. 

Suffering from severe MI may be influenced by numerous risk factors 
(Nawrot et al. 2011; Smyth et al. 2016). Previous studies suggest that 
risk factors for MI severity may focus on three main dimensions: the 
physical environment (e.g., temperature changes, air pollution, traffic 
exposure) (Chen et al. 2019; Miller et al. 2007; Nieuwenhuijsen, 2018; 
Raziani and Raziani, 2021; Vienneau et al. 2019), the social status (e.g., 
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residents’ neighbourhoods, social networks) (Gerber et al. 2010; Wang 
et al. 2019) and patients’ own body conditions (e.g., smoking and 
drinking, vigorous exercise, obesity) (Mostofsky et al. 2015; Smyth et al. 
2016; Xu et al. 2018). However, limited by the lack of spatial data, some 
studies have not considered the spatial agglomeration effect on the 
increased or diminished severity for MI. With the increasing sophisti
cation of technologies related to Geographic Information System (GIS), 
some studies have explored the use of GIS-based spatial statistical 
analysis methods for the spatial agglomeration effect to further analyse 
risk factors for MI severity (Franch-Pardo et al. 2020; Rushton, 2003; 
Timonin et al. 2018). Thus, the studies are able to help assess disease 
severity for public health planning to reduce health inequalities. 

However, current GIS-based studies of MI generally suffer from dif
ficulties in focusing on too few factors, poor levels of data mining, and 
coarse-grained spatial data. Most studies have analysed several spatial 
risk factors from poor data sources, e.g., temperature and air quality 
map (Akbarzadeh et al. 2018; Liu et al. 2018; Rowland et al. 2020; Yang 
et al. 2017). Although these studies have provided basic correlations for 
MI-related public health planning, they lack the ability to consider the 
gain effect when multiple spatial risk factors act together, thereby failing 
to comprehensively simulate the ground-truth space. Meanwhile, most 
studies are also limited by the coarse-grained spatial data and unable to 
analyse spatial risk factors at microscopic scales (Amsalu et al. 2019; 
Tonne et al. 2007). Thus, they cannot effectively address the problem of 
targeted distribution of medical facilities. To deeper investigate the 
potential spatial risk factors for MI, it is necessary to comprehensively 
model the complex residential space at microscopic scales. 

To address these issues, this paper quantifies the spatial risk factors 
and their spatial agglomeration effect on MI severity at community- 
scale. The RFA-based SHAP interpretable model and multi-source spa
tio-temporal datasets are applied, coupled with community-scale MI 
patient attendance data, to deeply explore the spatial risk factors. The 
model considers the positive and negative impact on MI severity to 
deeply reveal the relationship. At the same time, the severity of MI at the 
urban community scale is predicted based on GIS spatial analysis. And 
its spatial distribution pattern is analysed, to achieve the purpose of 
preventing mortality due to severe MI at the urban micro scale. 

2. Literature review 

2.1. Spatial risk factors for myocardial infarction 

Previous studies have demonstrated that the MI severity shows some 
spatial patterns. Some studies have explored the specific causes of death 
from CVDs, e.g., the impact of greenness in residential areas on CVDs 
(Asri et al. 2020; Yang et al. 2020). In five of the eight relevant litera
tures, we found a significant association between CVD mortality and 
residential greenery (Hu et al. 2008; Lachowycz and Jones, 2014; 
Mitchell and Popham, 2008; Richardson et al. 2010, 2012; Richardson 
and Mitchell, 2010; Tamosiunas et al. 2014; Villeneuve et al. 2012). 
However, these studies were limited by the coarse grain of data, and had 
to analyse the association at coarse spatial scale, which cannot simulate 
the real space during a CVD attack. Thanks to development of computer 
vision techniques and the availability of street-view data, recent studies 
have been able to simulate the complicated space from a human-scale 
perspective (Helbich et al. 2019). 

Spatial risk factors for MI severity can be further summarised as 
spatial heterogeneity due to socio-economic inequalities. Some found 
that the effect of SVG on ischemic heart diseases varies significantly by 
individual demographic and socioeconomic characteristics (Yao et al. 
2022). Previous studies presented that the clusters of residents with a 
risk of low MI severity are more likely to be distributed in the most 
socio-economically favourable areas (Kihal-Talantikite et al. 2017). The 
residential space in these areas is characterised by shorter distances to 
healthcare facilities and greater access to public transport. Spatial het
erogeneity due to the socio-economic status may be reflected at more 

aspects. Thus, spatial risk factors for MI severity need to be further 
explored. 

2.2. Related spatial analysis methods 

Many studies in the field of health geography have explored spatial 
risk factors for MI severity using different spatial analysis methods. A 
number of studies have analysed the spatial distribution of MI severity 
considering a single aspect of potential spatial risk (Rowland et al. 2020; 
Yang et al. 2017). They only analysed the impact of temperature on MI 
severity, lacking a comprehensive analysis of multi-source spatio-tem
poral data. Some studies used a time-stratified case-crossover method to 
statistically analyse the effect of air pollutants such as PM10 and PM2.5 
on the risk of suffering MI (Akbarzadeh et al. 2018; Liu et al. 2018). But 
it’s greatly influenced by the setting of time interval and individual 
exposure differences, thereby suffering from subject selectivity bias and 
not suitable to consider the impact of long-term living environment 
(Maclure and Mittleman, 2000). 

Some studies explored the spatial agglomeration effect of the po
tential risk on MI severity at a coarse spatial scale. A previous research 
used the distance from residential areas to main roads as a proxy for 
residents’ exposure to traffic-related air pollutants (Tonne et al. 2007). 
However, the impact of traffic exposure is not directly analysed on the 
MI severity at the aspect of traffic pollutants. Previous studies only 
analysed the spatial distribution of MI severity at the district and county 
scale, but not at micro scale (Amsalu et al. 2019). Thus, these results 
could not effectively address the issue of targeted distribution of medical 
supplies. 

In summary, spatial studies of MI severity generally suffer from 
difficulties in focusing on too few factors, poor levels of data mining, and 
lack of fine-grained prediction and mapping. 

3. Materials and methodology 

3.1. Study area 

Wuhan, the capital of Hubei Province, China (Fig. 1 (A) (B)), is 
selected as the study area for this paper. Wuhan is located in central 
China, between 29◦ 58’ - 31◦ 22′ N and 113◦ 41’ - 115◦ 05′ E. It covers an 
area of 85.69 million km2, with a resident population of 11.21 million in 
2019 (Statistics, 2020). Wuhan has 13 administrative districts, of which 
the central Hankou area (Jianghan District, Jiangan District, Hanyang 
District and Qiaokou District) is the well-developed area with a high 
density of urban population. Wuchang District and Hongshan District 
are the areas where universities gather. And Qingshan District is 
Wuhan’s industrial-functioned area. The districts of East-West Lake, 
Hannan, Caidian, Jiangxia, Huangpi and Xinzhou are suburb areas far 
away from the central urban. According to statistics, CVDs are the 
leading causes of death in Wuhan, with about 13 out of every 10,000 
people dying from the diseases (Statistics, 2020). 

3.2. Data 

3.2.1. Myocardial infarction patient attendance data 
The data of MI patient cases in Wuhan are collected from the People’s 

Hospital of Hubei Province, containing information on 1098 anonymous 
MI patient attendances between 2016 and 2019. Table S1 shows the 
anonymised patient attendance data. It included information on time of 
admission, current address (latitude, longitude, address), age, gender, 
number of days in hospital, total cost of hospitalisation, whether or not 
they died, and the corresponding diagnostic modality for different pa
tients. In this paper, it is hypothesized that the higher the patients’ 
hospital expenditure, the more severe MI that he/she suffers. Here, five 
levels (0–4) of MI severity are expressed in terms of patients’ hospital 
expenditure with based on the natural discontinuity grading method 
(Chen et al. 2013). In addition, MI mortality is used in form of a 
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dichotomous variable (‘0’ = survival, ‘1’ = death). 

3.2.2. Multi-source spatio-temporal data 
In this study, Point-of-interest (POI) and OpenStreetMap (OSM: http: 

//openstreetmap.org) road network data are collected. POI data is able 
to reflect the socio-economic conditions of different regions and help to 
explore the pattern of urban space (Yao et al. 2017; Yuan et al. 2014). 
OSM road network data have the advantages of high presentability, rich 
information, and large data volume, which can well record the key 
urban traffic data (Goodchild, 2007). 

In terms of demographic and economic data, this paper uses Real- 
time Tencent user density (RTUD) data from 2016 to 2019. RTUD 
data record the location of Tencent users every hour, of which about 570 
million users use WeChat daily, more than 1/3 of China’s population. So 
RTUD data can effectively reflect the range of activities of residents at 
different times of the day (Yao et al., 2017b). 

This paper used meteorological data before and after patient ad
missions during the period 2016–2019 from the Public Meteorological 
Service Centre of the China Meteorological Administration (http:// 
www.weather.com.cn/), to represent the climate and weather condi
tions. This includes temperature data, AQI index and concentrations of 
various air pollutants (SO2, NO2, CO, O3, PM10, PM2.5) before and 
after the patients’ admission. 

For the urban space aspect, Tencent streetview images (https://map. 
qq.com/jiejing) are used to assess the exposure rates of different cate
gories of features. Based on OSM’s road grid sampling points, streetview 
images from four different angles (0◦, 90◦, 180◦, 270◦) were collected. A 
deep learning model, a fully convolutional neural network (FCN-8s), is 
used and trained from ADE20K data to identify various categories of 
feature exposure (Helbich et al. 2019). The model achieved an 
end-to-end accuracy of 0.81 on the training dataset and 0.67 on the test 
dataset (Kang and Wang, 2014; Yao et al. 2019). In addition, Street View 

Fig. 1. Location of the study area. (A) Hubei Province, (B) Wuhan City. And the spatio-temporal variables, including (C) famous tourist attractions, (D) scientific, 
educational and cultural services, (E) car services, (F) public facilities, (G) place name address information, (H) domestic services, (I) medical services, (J) road 
intersections, (K) night-time population density, (L) regional population density, (M) GDP, (N) maximum temperature, (O) minimum temperature, (P) temperature 
difference between days, (Q) SO2, (R) NO2, (S) CO, (T) O3, (U) PM10, (V) PM2.5. 
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Greenness (SVG) is calculated for the landscape (Wang et al. 2020). 
Here, descriptive statistics of the above datasets are conducted in 

Table 1. The average value and standard deviation of these variables are 
calculated within a 600 m buffer. Moreover, we normalized the data by 
scaling the range of variable values to 0 (low) - 1 (high). And their 
spatial distributions are shown in Fig. 1(C)–(V). Areas with high values 
of the variables are in red and vice versa in green. 

3.3. Methodology 

The detailed workflow of this paper is shown in Fig. 2. Two steps are 
included. (1) Data pre-processing. First, the invalid records and incor
rect data of the multi-source spatio-temporal data are filtered out. And 
then, the spatio-temporal risk factors are expressed in terms of the 
average values of the spatio-temporal variables within a 600 m buffer. 
(2) Analysis of MI severity. The RFA-SHAP model is trained first by using 
the multi-source spatio-temporal features and the patient cases data. The 
performance of the models is evaluated by comparing with conventional 
statistical regression analysis methods. Next, the prediction of MI 
severity in Wuhan is mapped and its distribution patterns are analysed. 

3.3.1. RFA-based SHAP interpretable model 
The RFA has the advantage of incorporating high-dimensional spa

tio-temporal data and handling thousands of explanatory variables 
(Breiman, 2001; Lin and Jeon, 2006). In the field of public health, 

previous studies have applied RFA model to analyse the spread risks and 
drivers of infectious diseases (Yao et al. 2021). While SHAP is an 
interpretable machine learning method based on game theory (Lund
berg and Lee, 2017). This method can calculate the Shapley value cor
responding to each variable based on the Monte Carlo sampling method 
(Rubinstein and Kroese, 2016). Thus, it can quantify the effects of 
dependent variables on independent variables, thereby bridging the gap 
of the RFA in terms of variable interpretability. 

To analyse the performance of RFA-SHAP in multi-classification 
tasks like the MI severity analysis, three models (i.e., multiple linear 
regression, geographically weighted regression (GWR), and multiscale 
geographically weighted regression (MGWR) (Fotheringham et al. 
2017)) are applied for comparison. R2 (Nakagawa and Schielzeth, 2013) 
is used for regression accuracy assessment. Also, for classification ac
curacy assessment, metrics such as precision, recall, and F1 value are 
used to compare diverse machine learning models (Flach and Kull, 
2015). In the MI mortality analysis, given the spatio-temporal autocor
relation in the data, Cox proportional hazards regression model, Cox 
frailty model, and MGWR model are used for baseline comparisons to 
analyse the performance of RFA-SHAP in such a binary classification 
task. R2 is not a good enough measure for binary classification tasks (Cox 
and Wermuth, 1992). Thus, AIC (Akaike information criterion) is 
applied to assess the goodness of fit of the models (Akaike 1974), while 
C-index is for assessing the prediction accuracy of the models. It should 
be noted that in the MI mortality analysis of the Cox models, the C-index 
metric is equivalent to the AUC (area under curve) (Brentnall et al. 2015, 
Harrell 2015). 

Considering the five levels of MI severity in the MI patient atten
dance data, Equation (1) was used to calculate the model accuracy (MA) 
for the RFA model. 

MA=

∑n

i=1

1
|yi− pred − yi− true|+1

n
(1)  

where n, yi− pred, yi− true, indicates the total number of samples, the i-th 
patient’s severity level that the model predicts, and the actual severity 
level of the i-th patient, respectively. 

3.3.2. Spatial analysis method 
To explore the spatial agglomeration effect of the MI severity of in 

Wuhan, this paper uses the global Getis-Ord General G and local Getis- 
Ord Gi* methods (Getis and Ord, 2010). The local Getis-Ord Gi* is 
calculated as follows. 

G*
i =

∑n
j=1wi,jxj − X

∑n
j=1wi,j

S

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

n
∑n

j=1
w2

i,j −

(
∑n

j=1
wi,j

)2
]

n− 1

√
√
√
√

(2)  

where G∗
i denotes the z-score. Given that it is significant, the positive z- 

score means that the region is a hotspot, i.e., a high severity of MI exists 
in this region, and vice versa. xj denotes the attribute value of j-th 
element; wi,j denotes the spatial weight between i-th element and j-th 
element; n denotes the total number of elements; X denotes the mean 
value of the attributes of all elements in a region; S denotes the standard 
deviation of the attributes of all elements in a region. 

4. Results 

4.1. General statistical analysis 

A general statistical analysis is performed for the MI patient atten
dance data. Gender, age and temperature are found as the key factors 
influencing the MI severity. Older people and men are more likely to 
suffer a severe MI. And the mortality rate for the disease is higher in 
winter than in summer. The detailed results are presented in the 

Table 1 
Descriptive statistics for multi-source spatio-temporal data, including the 
average value, standard deviation and abbreviations of the variables after sta
tistical analysis of the multi-source spatio-temporal data within a 600 m buffer.  

Category Variable Average value 
(STD) 

Abb 

Patient Personal 
Information 

Age (years) 66.56 (±13.208)
Male (%) 74.3  
Female (%) 25.7  
Recovery (%) 90.6  
Dead (%) 9.4  
Disease severity level (0–4) 1.27 (±1.182)

Multi-source 
Geographic Data 
(pcs) 

Famous Tourist Sites 7.15 (14.025) FTS 
Science, Education and 
Culture Services 

70.54 (61.356) SEC 

Car Service 15.31 (14.914) CAS 
Public Facilities 11.73 (12.405) PBF 
Toponymic Address 
Information 

197.68 
(186.577) 

TAI 

Life Service 229.69 
(173.129) 

LFS 

Healthcare Service 47.67 (42.891) HCS 
Road Intersections 131.58 (97.712) RIS 

Demographic 
Economic Data 

Nighttime Population 
Density (persons/km2) 

8613.47 
(3733.519) 

NPD 

Regional Population Density 
(persons/km2) 

7441.64 
(4043.206) 

RPD 

Neighbourhood GDP 
(10,000 Yuan/km2) 

48247.11 
(32589.214) 

GDP 

Meteorology Maximum Temperature (◦C) 23.42 (9.102) MAT 
Data Minimum Temperature (◦C) 14.45 (9.065) MIT 

Temperature Difference 
Between Days (◦C) 

0.23 (2.480) TDB 

SO2 (ug/m3) 3.79 (2.062)  
NO2 (ug/m3) 23.60 (12.083)  
CO (mg/m3) 10.08 (2.933)  
O3 (ug/m3) 22.81 (14.827)  
PM10 (ug/m3) 60.54 (25.870)  
PM2.5 (ug/m3) 62.98 (39.957)  

Street View Street-View Green 0.17 (0.063) SVG 
Data (%) Street-View Wall 0.03 (0.012) SVW  

Sky View Factor 0.13 (0.058) SVF 
Street-View Window 0.00035 

(0.0006) 
SWI 

Street-View Street 0.18 (0.034) SVS 

Abb = Abbreviation. 
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supplementary material Fig. S1 and Fig. S2. 

4.2. Analysis of multi-source spatial factors for MI severity via RFA-based 
SHAP model 

4.2.1. Performance of RFA-based SHAP model 
This section demonstrates the effectiveness of the RFA for high- 

dimensional nonlinear problems. The confusion matrix of prediction 
of MI severity using the RFA-based model is shown in Table 2. The result 
shows a Kappa coefficient of 0.889, a Precision of 0.933, a Recall of 
0.874 and an F1 score of 0.900. It can be seen that the RFA has a good 
performance in this issue. 

We also set up a baseline experiment to demonstrate the good per
formance of the RFA. Table S2 shows that in the MI severity analysis, 
traditional regression models are not very accurate (R2 is below 0.2) 
when faced with large amounts of non-collinear spatio-temporal data. In 
addition, the Cox frailty model (AIC = 1200.0, AUC = 0.956) fitted 
significantly better than MGWR (AIC = 3055.1) in the MI mortality 
analysis. While the RFA not only has the advantage of explaining the 

contribution of the multi-source variables, but also can fits the high- 
dimensional non-collinear data well (R2 = 0.774 in the MI severity 
analysis, and AUC = 0.960 in the MI mortality analysis). Table S3 and 
Fig. S3 demonstrate the advantages of RFA over other machine learning 
algorithms. Moreover, the training set accuracy as well as the test set 
accuracy of the RFA are higher than other algorithms, further proving it 
is the optimal algorithm for this study. 

4.2.2. The effects of multi-source spatial factors on MI severity and 
mortality 

The effects of multi-source spatial factors on MI severity and mor
tality are analysed separately.  

(1) In terms of MI severity, the risk factor that causes the risk of 
highest MI severity is age, followed by road intersections, patient 
gender, and meteorological condition, as shown in Fig. 3 (A). 
Fig. 3 (B) illustrates that (a) the MI severity is relatively higher for 
younger patients. (b) For residents living in areas with good ac
cess to transportation (RIS) and high quality of health care service 

Fig. 2. Workflow of assessing MI severity from the urban environment perspective.  

Table 2 
Confusion matrix of classification. Columns represent predicted values, while rows represent ground-truth 
values. 
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(HCS), they have the conditions for early detection and treatment 
of the disease. (c) Male patients are usually at a risk of signifi
cantly higher MI severity than female patients in terms of gender. 
And (d) residents are at a risk of higher MI severity of acute MI in 
both hot weather (MAT) and cold weather (MIT).  

(2) In terms of MI mortality, age is the most important factor (Fig. 3 
(C)). Fig. 3 (D) further found that (a) the older the infarction 
patient, the higher the mortality rate. (b) The mortality rate of MI 
patients is higher in colder temperatures (MIT), or in weather 
with a high temperature difference between days (TDB) (e.g., 
after a severe cooling). (c) The more health care services (HCS) 
are available, the more people in those areas choose to seek 
medical attention nearby. However, most general community 
hospitals are not equipped to treat MI, which delays the prime 
time for treatment and leads to a higher mortality rate. 

The severity of MI varies by region and by population. As shown in 
Fig. 4 (A), residents living in scenic areas, such as scenic spots, are less 
likely to have an acute MI, suggesting that urban livability is important 

for residents’ physical and mental health. Notably, Seo et al. (2019) 
found that increasing urban green space coverage would help reduce the 
risk of high CVD severity, based on the Cox proportional hazards 
regression model and the CVD records from over 300,000 Asian pop
ulations, confirming the importance of improving urban livability for 
population health (Seo et al. 2019). From Fig. 4 (D), it can be seen that 
residents living in suburban areas with low population density at night 
have a higher MI mortality rate as they take longer to reach a secondary 
or tertiary care hospital, delaying the prime time for treatment. Fig. 4 (B) 
and (E) show that the MI severity is lower in well-developed care ser
vices areas, but the MI mortality rate is higher in these areas. Fig. 4 (C) 
and (F) indicate that the MI severity is significantly higher for residents 
under 75 years of age than for those over 75 years of age. But the 
mortality rate is higher for older MI patients (over 75 years of age). The 
MI severity and mortality rates are significantly higher for women over 
75 years of age. A previous study has also shown that older women are 
more likely to suffer a severe MI in bad weather (Li et al. 2019). 

Fig. 3. Analysis of the risk factors for MI severity. (A) MI severity-variable contribution. (B) MI severity-variable-driven benefit. (C) MI mortality-variable contri
bution. (D) MI mortality-variable-driven benefit. 
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4.3. Community-scale spatial pattern of MI disease 

We also analysed the spatial pattern of MI in Wuhan at a community 
scale. Fig. 5 (A) shows that the risk area for highest MI severity is located 
near the Jianghan Road pedestrian street in the central area of Hankou 
(Jiang’an District, Jianghan District and Qiaokou District). It has higher 

pedestrian and vehicular traffic flow, higher exposure to crowd activity 
and traffic noise, and poorer sleep quality, thereby raising the risk of 
higher acute MI severity. The MI severity is also higher in areas such as 
Wuchang District and Hongshan District, where amounts of universities 
are located. The MI severity is also higher in the suburb areas, showing a 
donut-shape pattern of medium-high severity, as shown in Fig. 5 (B). 

Fig. 4. MI severity driver interaction analysis, including (A) FTS-SHAP values, (B) HCS-NPD interaction analysis, (C) Age-Sex interaction analysis. Infarction 
mortality driver interaction analysis, i.e., (D) FTS-SHAP values, (E) HCS-NPD interaction analysis, (C) Age-Sex interaction analysis. 

Fig. 5. Spatial distribution of MI severity at the community scale in Wuhan, (A) in the central city of Wuhan and (B) in satellite cities around the central city 
of Wuhan. 
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Among the medium-severity communities, 70.8% are in the suburb 
areas of Wuhan. This further confirms the finding in Fig. 4 (D) that in 
areas with poor accessibility, failure to seek medical attention in a 
timely manner will lead to increased severity of the disease. 

The global Getis-Ord General G spatial analysis was conducted on the 
MI severity in Wuhan communities. A global G index of 0.002 is ob
tained, with a p of 0.001 (significant) and a z score of 3.265 (greater than 
0). This indicates that overall in Wuhan, the MI severity is clustered in 
communities with high values, i.e., the distribution of higher severity 
communities is clustered. 

In addition, the local Getis-Ord Gi* hotspot analysis of the MI 
severity in each community in Wuhan was implemented. As seen in 
Fig. 6 (A), the hotspot communities are mainly located in Jianghan 
District, Jiang’an District and Hanyang District with 99% confidence. It 
is related to the fact that this area is an economically developed urban 
old city in Wuhan with a large elderly population living in the city. Fig. 6 
(B) reveals that hotspots with a confidence of 95% also exist in Hon
gshan District and Wuchang District, which are areas with a high con
centration of universities in Wuhan. Fig. 6 (C) shows that a few hotspots 
with a confidence greater than or equal to 90% for the MI severity also 
exist in the suburbs of Wuhan (Caidian District), which is related to the 
poor configuration of medical facilities in the suburbs of the city and the 
lack of access to high-quality medical care for residents. 

5. Discussion 

5.1. Scientific contributions 

This paper makes the following 3 scientific contributions. 
First, this paper is the first to apply multi-source spatio-temporal data 

and RFA-SHAP model to analyse the risk factors for MI severity. We 

revealed that the RFA-based SHAP interpretable model is the best per
forming machine-learning model to analyse the quantitative impact of 
spatial risk factors on MI disease by comparing different baseline 
methods. And this paper innovatively predicts the potential spatial MI 
severity at the community scale, and analyses its abnormal spatial dis
tribution. The results can be used for in-depth research in the fields of 
public health, big data and urban planning, and provide reasonable 
support for the targeted distribution of medical facilities at the com
munity scale. 

Second, this paper calls for attention to be paid to the impact of 
spatial environmental factors on MI severity. We discovered some 
interesting spatial risk factors and spatial patterns of MI severity and 
mortality, which can often be overlooked but are helpful for severe MI 
prevention and health equality in urban planning. Some spatial risk 
factors (e.g., areas with good access to medical and traffic services, 
pleasant scenery and high air quality) have a lower severity of residents 
suffering from MI, which is consistent with previous studies (Chen et al. 
2020; Widimský et al. 2003). However, we found that the mortality is 
higher in areas with too many medical services (50+ homes/600 m 
buffer zone). Also, a higher mortality of acute MI is found in extreme 
weather conditions (e.g., low temperatures and sudden temperature 
changes). Spatial patterns of MI at the community scale were discovered 
for urban planning in Wuhan, China. We found that the MI severity is 
high in the vicinity of Jianghan Road Pedestrian Street in Jianghan 
District, where are the traditional downtown area of Wuhan. While the 
MI severity is high in the suburb areas, with a strong spatial agglomer
ation effect. 

Last, this paper summarised some rules of MI severity for urban 
residents in terms of age and gender. Residents who meet the following 
conditions should pay more attention to the prevention of severe MI. (a) 
In terms of patient age, younger patients tend to have a higher MI 

Fig. 6. Analysis of the distribution pattern of MI severity hotspots at the district scale in Wuhan, (A) in the central city of Wuhan, (B) in Wuchang and Hongshan 
districts of Wuhan, and (C) in Caidian district of Wuhan. 
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severity but older patients have a higher mortality rate. 75 years of age is 
the cut-off point. Approximately 5% of those over 75 years of age pre
sents with symptoms of MI without a history (Valensi et al. 2011). (b) In 
terms of patient gender, women with MI have a higher average age and 
mortality rate than men, while men have a higher MI severity than 
women. The average age of female patients in hospital is 73.57 years and 
the mortality rate is 12.06%, while the average age of male patients is 
64.13 years and the mortality rate is 8.46%. 

5.2. Policy implication 

Based on the above results, the following three advices are made for 
the prevention of severe MI in the aspect of policy implication.  

(a) Strengthen residents’ education on severe MI prevention and first 
aid science. Because these knowledge about MI facilitates the 
timely treatment of acute MI cases (Hertz et al. 2019). This paper 
recommends equipping residents with basic acute MI counter
measures and being able to arrange routes to medical care as soon 
as possible, while concentrating on severe MI prevention mea
sures for the elderly (aged 75 and above) in extreme weather 
conditions. 

(b) Increase the prevalence of medical check-ups among the resi
dents. Early detection and treatment of MI are essential to reduce 
the mortality from MI (Laichuthai et al. 2020), as the acute MI is 
associated with underlying conditions such as the patient’s own 
hypertension (Flint et al. 2019) and diabetes (Norhammar et al. 
2002). Thus, we suggest strengthening regular CVDs screening 
for residents in some areas, e.g., densely populated communities, 
colleges and universities, and areas with a large elderly 
population. 

(c) Adhere to the principle of equality in urban planning. The in
crease in visible green space (Seo et al. 2019), the reduction of 
urban noise (Nieuwenhuijsen, 2018) and the equitable distribu
tion of medical facilities (Miller et al. 2020) can help to reduce 
the incidence of MI among residents. Thus, this paper proposes to 
upgrade the greening of the central city, build road sound barriers 
in the downtown area to reduce urban traffic noise, and rationally 
distribute good-quality medical facilities in both urban and sub
urb areas. 

5.3. Shortcomings and future work 

Inevitably, some shortcomings exist in this study.  

(1) This paper finds that the SHAP model can perfectly integrate 
advanced machine learning algorithms and apply its excellent 
interpretability to the field of public health as a bold attempt. 
However, machine learning models require a large data size for 
training, otherwise the models are prone to overfitting (Breiman, 
2001). It is well known that data are challenging to obtain in the 
medical field. Thus, the next step in this research is to get better 
results with small data.  

(2) The RFA-SHAP has a longer computation time, compared to the 
conventional machine learning models (e.g., multiple linear 
regression, Cox frailty model and GWR). It is also worth consid
ering how to improve the computational speed of the model 
based on high performance computing technology.  

(3) Only information of age and gender were collected. Other body 
factors and health issues (e.g., BMI, blood pressure, drinking/ 
smoking habit, obesity, diabetes, exercise habit, family history, 
etc.) are also important to be considered. In future studies, we 
will further analyse patient attendance data and field survey data 
at the community scale rather than the individual patient scale. 
Furthermore, this study will carry out a more comprehensive 
multi-dimensional analysis of the risk factors for comparison. 

6. Conclusion 

This paper proposes the RFA-based SHAP interpretable model to 
explore the impact of spatial risk factors on MI severity. The model 
shows a good performance with the test accuracy of 0.720 and the Kappa 
coefficient of 0.889. In addition, we found that.  

(1) strong correlations exist between MI severity and age, gender of 
patients. First, younger patients tend to get a higher severity of 
MI. Second older patients show a higher MI mortality rate, 
especially those over 75 years of age. Next, males are at higher 
severity of getting MI than females. Last, female patients have a 
higher mortality rate than males.  

(2) MI severity is related to living environment and meteorology 
factors, which can often be ignored. First, residents in areas with 
good access to medical facilities and high urban livability are at 
risk of lower severity of MI. Second, acute MI mortality is higher 
in areas with too many medical facilities. Next, extreme weather 
conditions such as low temperatures and sudden temperature 
changes will also increase the mortality rate of MI.  

(3) Some spatial patterns of MI severity are revealed in Wuhan. First, 
residents in downtown areas of urban centres are more likely to 
get high-severity MI. Second, in suburb areas where medical and 
traffic facilities are not well-equipped, a donut-shape pattern of 
risk of medium-to-high-severity of MI exists. This paper aims to 
appeal for attention to the impact of environmental risk factors 
on MI severity. Thus, three recommendations are made to reduce 
the spatial impact on MI severity in the aspect of policy impli
cation. We propose (a) popular education of residents on MI 
prevention, (b) regular medical check-ups for community resi
dents, and (c) rational allocation of city resources to ensure 
health equality within the city. 
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