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A B S T R A C T   

Urbanization-induced land cover changes significantly impact ecological environments and socioeconomic 
growth. Vector-based cellular automata (VCA) models are an advanced cellular automata (CA) method that use 
irregular cells and perform well in simulating land use changes within urban areas. However, the applicability 
and parameter setting of VCA models for land cover change simulation are still challenging for researchers. To 
address this issue, this study applied a VCA model and two raster-based models, i.e., a pixel-based CA model and 
a patch-based CA model, to simulate and compare their performance in simulating land cover changes. The 
results show that VCA and patch-based CA were superior, with VCA's FoM being 39.74% higher than pixel-based 
CA and 11.00% over patch-based CA. VCA effectively tracks construction land expansion in rapidly developing 
areas, while patch-based CA excels in central urban and suburban shifts, fitting broader study scopes. Addi-
tionally, a spatial scale sensitivity analysis of the VCA model revealed that a smaller VCA cell size improves 
accuracy but introduces a risk of spatial pattern errors. Notably, the scope of study impacts VCA accuracy more 
than cell size. These findings bolster land cover change modeling theory and offer insights for precise future land 
cover change simulations and decision-making.   

1. Introduction 

Land cover change is an important issue in sustainable development 
research (Li et al., 2017; Yang & Huang, 2021). Land cover change 
modeling and simulation is important research for exploring land cover 
driving mechanisms, supporting urban planning and policy making, and 
assessing ecological and environmental impacts (Verburg et al., 2019). 
Land use and land cover are two key concepts in this field. Land use 
change simulation studies how human activities affect land resources, 
while land cover change simulation focuses on the joint effects of natural 
factors and human activities on surface cover(Feng & Tong, 2017; Zhang 

et al., 2019). 
CA models show good performance in simulating the spatiotemporal 

dynamic of land use and land cover, making them the mainstream 
methods in this field(Tong & Feng, 2020; Wang, Zheng, & Zang, 2012). 
Traditional cellular automaton models use raster cells with regular 
shapes and sizes to represent cellular space, which have high model 
efficiency(Clarke & Gaydos, 1998; Feng, Liu, & Tong, 2010; Li & Yeh, 
2002). Examples include pixel-based CA models like FLUS and patch- 
based CA models like PLUS(Liu et al., 2017, Liang et al., 2021b). But 
it is challenging to use them to obtain high-precision simulation results. 
Because urban spatial structures often consist of irregular blocks or 
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features, not regular units, leading to deficiencies in raster CA's repre-
sentation of these irregular entities (Barreira-González, Gómez-Delgado, 
& Aguilera-Benavente, 2015; Moreno, Wang, & Marceau, 2010). 

VCA is seen as one direction for CA's future development, aiming to 
overcome the limitations of traditional raster-based CA models in rep-
resenting irregular urban spatial structures (Guan et al., 2023; Long, 
Shen, & Jin, 2016; Shi & Pang, 2000). VCA model uses irregular poly-
gons to form a cellular space. The basic unit of urban planning is the 
“plot” or “parcel”. Given that the main objective of CA models is usually 
to assist or improve urban planning, it seems appropriate to adopt the 
same spatial representation method as urban planners (Abolhasani et al., 
2016; Barreira-González & Barros, 2017). Building on this approach, 
Yao et al. (2017) proposed a dynamic land parcel subdivision DLPS-VCA 
model. This model uses cadastral parcels divided based on natural 
conditions and land use types as basic units. It adopts a binary recursive 
partitioning to split cadastral parcels larger than the threshold into 
smaller parcels, simulating the fragmentation process caused by urban 
expansion more realistically. Zhai et al. (2020) further proposed the 
CNN-VCA model, which effectively explored the relationship between 
land use change and driving factors within the neighborhood of parcels. 

However, the applicability of current VCA models for simulating 
land cover change remains unclear. These models have been primarily 
used to simulate changes in urban land use types (such as residential and 
industrial uses) (Yao et al., 2017; Zhai et al., 2020). Unlike the struc-
tured land use types in urban areas, natural land cover data may show 
irregular change patterns and fragmented patches (Liang et al., 2021b). 
Therefore, it is necessary to further study whether VCA models can 
effectively capture the complexity and diversity of natural land cover 
change, as well as reflect the different patterns of urban expansion and 
spatial structure change. Despite this, the introduction of VCA models 
undoubtedly provides an effective tool for researchers and policymakers 
focused on land use and land cover. By deeply comparing and evaluating 
the applicability and shortcomings of VCA models and raster CA models 
in simulating different land cover change patterns, important references 
can be provided for the selection and application of CA models in 
different cases. 

Moreover, the sensitivity of the VCA model in simulating land cover 
changes is also unclear. In addition to the influence of cellular space, CA 
models, including VCA, are constrained by parameters such as spatial 
scale and neighborhood configuration(Tong & Feng, 2020). This makes 
sensitivity analysis a necessary step in CA modeling, as it can verify the 
model's credibility and assess the uncertainty of results (Wu et al., 2019). 
Spatial scale involves both scope and resolution (Gibson, Ostrom, & 
Ahn, 2000; Gounaridis et al., 2019). Ignoring spatial scale can lead to 
oversimplification, decreased accuracy, or overly complex issues that 
are hard to handle and interpret, thereby increasing uncertainty (Ver-
burg et al., 2004). Existing studies on raster CA models have shown a 
negative correlation between simulation accuracy and spatial resolution 
(Cuellar & Perez, 2023; Gounaridis et al., 2019; Pan et al., 2010). Unlike 
traditional CA models, the cells in VCA models are irregular polygons, 
with shapes and sizes that dynamically change throughout the simula-
tion process. This gives VCA models greater spatial flexibility and data 
precision, but also introduces more complex scale and neighborhood 
effects(Zhu et al., 2021). Some researchers believe that VCA models 
eliminate cell size sensitivity (Dahal & Chow, 2015), but models like 
DLPS-VCA still consider land fragmentation processes, which involve 
scale effects (Yao et al., 2017; Zhai et al., 2020). Therefore, this study 
will explore the VCA model spatial scale sensitivity and provide theo-
retical support for application. 

In summary, studies comparing the applicability and spatial scale 
sensitivity of VCA models and raster-based CA models in simulating land 
cover changes are limited. This study uses Shenzhen City as a case study 
and examines the suitability of pixel-based CA model FLUS, patch-based 
CA model PLUS, and VCA model in simulating land cover changes. The 
study also quantifies different urban expansion patterns based on two- 
phase land cover data and analyzes the suitability of the models under 

different urban expansion scenarios. Additionally, the study discusses 
the uncertainty of cell size in the simulation process of VCA models. This 
study enriches and improves the theory of CA models and provides 
certain support for land planning and management decisions. 

2. Methodology 

The study content of this study is divided into three steps, as shown 
in Fig. 1: (1) Data preprocessing, which converts raster-based land cover 
data into vector format and splits the land parcels according to the preset 
iteration times and split thresholds; (2) Land cover simulation, which 
uses FLUS, PLUS, and VCA models respectively to simulate land cover 
changes. The simulation effects of the three models are compared 
through accuracy evaluation, spatial pattern analysis, and model oper-
ation time to analyze their respective advantages, disadvantages and 
applicable scenarios; (3) Scale sensitivity analysis, which compares the 
simulation accuracy of the VCA model under different cell sizes and 
explores its uncertainty on spatial scale. 

This study used three geographical cellular automata models, FLUS, 
PLUS and VCA, to simulate land cover changes. These models differ in 
cellular space, neighborhood effects, data requirements, and methods 
for computing transition suitability. FLUS and PLUS models used regular 
pixels, while VCA model used irregular polygons. FLUS model used 
artificial neural network algorithm and single-period historical data to 
calculate transition suitability. PLUS and VCA models used random 
forest algorithm and two-period historical data for simulation. VCA 
model also used a centroid-intercepted buffer rule based on land parcel 
area weighting to obtain neighborhood effects. The details of these 
models are described in Sections 2.2, 2.3 and 2.4. 

2.1. Geographical cellular automata model simulating land cover changes 

CA models consist of four basic elements: cells, states, neighbor-
hoods, and transition rules (White, Engelen, & Uljee, 1997). In CA 
models, each cell has a specific state, and future states are determined by 
transition rules, which can simulate dynamic changes in cell states over 
a certain period(Feng & Tong, 2017). 

Previous studies generally calculate the overall transition probability 
of each cell by integrating four parts: transition suitability, neighbor-
hood effect, constraint factors, and random factors (Chen et al., 2016b). 
A common cellular automata model framework is shown in the sup-
plementary material (Fig. S1). The transition probability of the i-th cell 
changing to the k-th land cover type at time t is: 

Pk,ti = P(o)
k,t
i ×Ωk,t

i × con
(
Stik

)
×RA (1)  

where Pk,t
i is the transition probability that the k-th land cover change 

type occurred in cell i at time t. P(o)
k,t
i is the transition suitability of the 

k-th land cover change type that occurred in cell i at time t. con
(
St

ik
)

refers to the constraint coefficient of the cell's development. 
Ωk,t

i represents the neighborhood effect of cell i changing to k-th land 
cover at time t. RA is a random factor value. 

Transition suitability reflects the relationship between land cover 
changes and driving factors. It can be derived from historical data using 
statistical or machine learning methods such as logistic regression, 
multicriteria evaluation, and support vector machines (Fu, Wang, & 
Yang, 2018; Liao et al., 2016; Yang, Li, & Shi, 2008). Among them, the 
random forest algorithm can effectively mine the relationship between 
multiple nonlinear variables and quantify the importance of each vari-
able. Many researchers have compared it with artificial neural networks, 
support vector machines, and other methods, concluding that random 
forest performs better in prediction ability and interpretability (Lv et al., 
2021; Rienow et al., 2021). Neighborhood effect reflects the interaction 
between different land cover units within the neighborhood range. The 
neighborhood effect in raster-based CA models is determined by the 
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following formula: 

Ωt
p,k =

∑

N×N
con

(
ct− 1
p = k

)

N × N − 1
× wk

(2)  

where 
∑

N×N
con

(
ct− 1

p = k
)

represents the total number of grid units 

occupied by land cover type k in the N × N window at the last iteration 
time t-1. wk is a variable weight between different land cover types 
(Liang et al., 2021b). 

Constraint factor refers to the control measures that prohibit specific 
land cover types (such as water bodies and protected areas) from being 
converted to other land cover types. The constraint factor of the i-th land 
parcel at time t is: 

con
(
Stik

)
=

{ 0 ( restricted development area)
1 (suitable development area)

(3)  

2.2. FLUS model simulating land cover changes 

The Future Land Use Simulation (FLUS) model is an advanced raster- 
based CA model(Liu et al., 2017). The basic principle of the FLUS model 
involves using the Artificial Neural Networks (ANN) algorithm to 
calculate the transition suitability of each land cover type in the region 
based on land cover data of the simulation start year and various driving 
factors. This is then combined with neighborhood effects, adaptive 
inertia coefficients, and conversion costs to obtain the overall conver-
sion probability of each cell. Finally, simulation results are generated 
using a roulette competition mechanism. 

The self-adaptive inertia coefficient Dt
k can automatically adjust the 

inheritance of current land cover on each grid unit based on the 
discrepancy between macro demand and allocated land cover, ensuring 
that land cover allocations meet macro demand. The adaptive parameter 
depends on differences between current development and future de-
mand cell numbers, which is defined as follows: 

Dt
k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dt− 1
k if

⃒
⃒Gt− 1

k

⃒
⃒ ≤

⃒
⃒Gt− 2

k

⃒
⃒

Dt− 1
k ×

Gt− 2
k

Gt− 1
k

if 0 > Gt− 2
k > Gt− 1

k

Dt− 1
k ×

Gt− 1
k

Gt− t
k

if 0 < Gt− 2
k < Gt− 1

k

(4)  

where Gt− 1
k and Gt− 2

k are the differences between the allocated amount of 
land cover type k and macro demand for the t-1th and t-2th iterations, 
respectively. 

2.3. PLUS model simulating land cover changes 

The Patch-generating Land Use Simulation (PLUS) model is devel-
oped based on the FLUS model, coupling the Land Expansion Analysis 
Strategy (LEAS) and the CA based on Multiple Random Seeds (CARS) 
(Liang et al., 2021b). LEAS samples the land cover data and driving 
factors of the two periods, and uses the random forest (RF) algorithm to 
calculate the transition suitability of various types of land. The main 
differences between the PLUS model and the FLUS model are that the 
former uses multi-temporal training data and an improved suitability 
calculation method. According to a study by Liang et al. (2021b), these 
improvements enable the PLUS model to simulate land cover change 
more accurately than the FLUS model. 

CARS combines a self-adaptive inertia coefficient and multi-type 
random patch seeding mechanism based on threshold descent. When 
the neighborhood effect of land cover Ω is 0, the mechanism generates 
change ‘seeds ‘on the transition suitability surface P(o)

k,t
i for each land 

cover type by Monte Carlo method. Seeds can produce new land cover 
types and grow into new patches of the same land cover type's cells. 

OPd=1,t
i,k =

⎧
⎨

⎩

Pd=1
i,k × (r × μk) × Dt

k if Ωt
i,k = 0 and < Pd=1

i,k

Pd=1
i,k ×Ωt

i,k × Dt
k all others

(5)  

where r is a random value ranging from 0 to 1; μk is the threshold to 

Fig. 1. Flowchart of land cover change simulation via multiple CA model.  
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generate the new land cover patches for k-type land cover. In order to 
control the generation of multiple land cover patches, a threshold 
descending rule of competition process was proposed to restrict the 
organic growth and spontaneous growth of all land cover types: 

If
∑N

k=1

⃒
⃒Gt− 1

c

⃒
⃒ −

∑N

k=1

⃒
⃒Gt

c

⃒
⃒ < Step Then, l = l+ 1 (6)  

⎧
⎨

⎩

Change Pd=1
i,c > τ and TMk,c = 1

No change Pd=1
i,c ≤ τ or TMk,c = 0

τ = δl × r1 (7)  

where Step is the step size of the PLUS model to approximate the land 
cover demand; δis the decay factor of decreasing threshold τ, which 
ranges from 0 to 1; r1 is a normally distributed stochastic value with a 
mean of 1, ranging from 0 to 2; l is the number of decay steps. TMk,c is 
the transformation matrix that defines whether land cover type k is 
allowed to be converted to type c. 

2.4. DLPS-VCA model simulating land cover changes 

This part uses the DLPS-VCA model that couples the dynamic land 
parcel subdivision strategy and RF algorithm as the representative of 
VCA(Yao et al., 2017). This model utilizes multi-temporal land cover 
data and the same random forest algorithm as the PLUS model to 
calculate the development suitability. In the DLPS-VCA model, the 
minimum area boundary rectangle (MABR) is used to iteratively divide 
the cell unit until all the cell sizes after splitting are less than the set 
value, obtaining basic cells (Cheng et al., 2008). Secondly, the mean 
value of spatial variables in each cell after splitting is calculated, and the 
random forest algorithm is used to calculate the transition suitability. 
Finally, it couples the neighborhood effect, random value, limiting fac-
tor, sets the number of iterations and total growth, and obtains the 
transition probability. In particular, this study builds a roulette based on 
the overall probability of all land cover types in the DLPS-VCA model, 
and selects land cover status in the next iteration. 

The cells of the VCA model are irregular polygons, so the raster-based 
CA neighborhood definition method is no longer applicable. In this 
study, the DLPS -VCA model adopted a centroid-intercepted buffer rule 
based on land parcel area weighting to obtain the neighborhood effect of 
the cell unit. At time t, the neighborhood effect of the jth cell relative to 
the ith cell can be expressed as: 

Ωt
i,j = e− dij/d⋅

Sj
/
Si

Smax/Smin
(8)  

where e is an exponential constant; dij is the center distance between the 
i th cell and the j th cell; Si and Sj represent the area of the i th cell and 
the j th cell, respectively; Smax and Smin represent the maximum and 
minimum area of the cells in the study area, respectively. 

2.5. Accuracy assessment and landscape consistency analysis 

The overall accuracy (OA), Kappa coefficient and Figure of Merit 
(FoM) were used to evaluate the accuracy of the results. When the Kappa 
coefficient is >0.75, it indicates that the model has high credibility. The 
FoM index is also an effective measure to evaluate the accuracy of land 
cover modeling (Pontius et al., 2008). In large-scale simulations, the 
FoM index of >0.2 indicates that the model has strong availability (Chen 
et al., 2014; Yao et al., 2022). The formula is listed as follows: 

OA = (B+ E)/(A+ B+ C + D+ E) (9)  

KAPPA = (OA − Pe)/(1 − Pe ) (10)  

FoM = B/(A+ B+ C + D) (11) 

Where A indicates the error of actual unchanged land that is 

simulated as changed; B represents the land that is correctly simulated as 
changed; C stands for the error that the actual and simulated land has 
changed but the type does not match; D represents the error of actual 
changed land that is simulated as unchanged; E represents the land that 
is actually unchanged and simulated as unchanged; Peis the expected 
accuracy under random conditions. 

The landscape index (LI) is used to describe and quantify the land-
scape structure and ecological pattern (Haines-Young & Chopping, 
1996; Yao et al., 2017). In this study, six landscape indices in Table 1 
were used to measure the urban landscape of the simulation results from 
different aspects (McGarigal, 2015). 

landscape pattern similarity can effectively measure the consistency 
of land cover patterns between simulated data and real data (Chen et al., 
2014), and its formula is as follows: 

αl = 1 −
1
n
∑

i
Δli (12)  

Δli =
⃒
⃒li,s − li,o

⃒
⃒
/
li,o (13)  

where li,s and li,o represent the i th LI of the simulated and real scenarios, 
respectively, and Δli is the normalized difference of the i th LI. 

Urban construction land expansion reflects the spatial structure of 
urbanization process(Wang et al., 2021, Zhou, Wu, & Wang, 2022). This 
study uses the Expand Intensity Index (EII) to measure the spatial 
expansion of construction land in different regions of Shenzhen from 
2008 to 2018. It analyzes the effects of different models under different 
urban expansion patterns. The definition is as follows: 

EII =
Ub − Ua

U
×

1
T
× 100% (14) 

Table 1 
Landscape indices for assessing landscape similarity.  

LI Significance Function 

Area_MN 

The average area of all patches 
or a certain type of patch; the 
smaller the value, the more 
fragmented the landscape ( 
Wang et al., 2020). 

Reflect the fragmentation 
and continuity of the 
landscape 

Edge density(ED) 

The larger the value, the longer 
the boundary length and the 
more scattered the distribution 
of land cover types (Zeng & 
Wu, 2005). 

Largest patch index 
(LPI) 

The larger the value, the higher 
the degree of aggregation of the 
dominant patches (Tong & 
Feng, 2020). 

Measure the aggregation 
of dominant patches 

Aggregation index 
(AI) 

The smaller the value, the more 
aggregated the patches of the 
same land cover type, i.e. the 
easier to form continuous 
areas. Conversely, the more 
likely to produce isolated small 
patches (He, DeZonia, & 
Mladenoff, 2000). 

Landscape shape 
index(LSI) 

It represents the shape 
deviation between the 
simulated landscape and a 
square with the same area. The 
larger the LSI, the more 
complex the shape of the 
simulated urban patches (Chen 
et al., 2016a). 

Evaluate the shape 
complexity of the 
landscape 

Perimeter area 
fractal dimension 
(PAFRAC) 

The larger the value, the more 
complex the shape of patches in 
the landscape and the greater 
the degree of human activity 
disturbance (Asubonteng et al., 
2020).  
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where U represents the area of the unit, Ua and Ub represent the con-
struction land area within the same spatial unit in the two periods 
respectively, and T represents the time interval between the two periods. 

3. Results 

3.1. Study area and data 

Shenzhen is located in Guangdong Province in southern China, with 
a total area of nearly 2000 km2. The city has 10 administrative regions, 
namely Futian, Luohu, Yantian, Nanshan, Baoan, Longgang, Longhua, 
Pingshan, Guangming and Dapeng (http://www.sz.gov.cn/cn/zjsz/gl/). 
Futian and Luohu are the political, cultural and commercial centers of 
Shenzhen. Nanshan is the center of gravity of science and technology 
and high-end industries (Chen & John, 2015). Dapeng is far away from 
the city center with many tourist attractions and nature reserves. As the 
most developed immigrant city in South China, Shenzhen has a complex 
land cover pattern. With the deepening of urban expansion, little con-
struction land remains, which has a rigid constraint on the social and 
economic development of Shenzhen (Liu et al., 2016). 

The FLUS, PLUS, and VCA models used in this study were consistent 
in terms of the study area, land cover data, spatial auxiliary data, and 
some parameter settings, in order to control for the effects of other 
variables. Land cover raster data is an important data set used in this 
study. The dataset is derived from the China Multi-period Land Use and 
Land Cover Remote Sensing Monitoring Data Set (CNLUCC) released by 
the Resource and Environmental Science Data Center (RESDC) of the 

Chinese Academy of Sciences (https://www.resdc.cn/). The CNLUCC 
adopts a two-level classification system (https://www.resdc.cn 
/DOI/DOI.aspx?DOIID=54). Detailed explanations regarding specific 
classification information can be found in Table S1 of the supplementary 
materials. To simplify the analysis, we redefined the land cover types in 
Shenzhen according to the first-level classification criteria of this sys-
tem, which are: cultivated land, non-construction land (including forest 
land, grassland, and unused land with <1% proportion), water area, and 
construction land (Fig. 2). This strategy aims to more intuitively 
compare the performance of different land cover change simulation 
models. 

Previous studies show that raster-based cellular automata models 
perform better with higher data resolution(Cuellar & Perez, 2023; 
Samat, 2006). Therefore, this study used 30 m resolution land cover data 
as input for FLUS and PLUS models to obtain the best accuracy, without 
conducting scale sensitivity analysis. However, VCA model required 
separate scale sensitivity analysis, as its cell size was independent of data 
resolution. In this study, the reclassified raster data was converted into a 
vector format, represented by polygonal blocks. Each irregular block has 
a unique ID and an attribute indicating the land cover type. These 
vector-based blocks were utilized as inputs for the VCA model. 

Land cover change is a complex phenomenon caused by the inter-
action of natural and human factors. This study used 14 spatial auxiliary 
data as driving factors influencing land cover change, as shown in Fig. 3. 
They are divided into natural factors (elevation, slope, distance to river, 
distance to coastline), traffic factors (distance to main roads, railways, 
subway stations, distance to road network and bus station distribution 

Fig. 2. Land cover data of Shenzhen.  
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density), and social and economic factors (distance to medical facilities, 
district and county centers, schools, entertainment venues, housing 
price distribution). The data comes from Gaode POI data and Open-
StreetMap data in 2018. In this study, spatial auxiliary data were con-
structed based on these data. This study converted these data into raster 
data with the same row and column numbers and a resolution of 30 m 
through spatial analysis. Additionally, the spatial auxiliary data was 
normalized to a range of 0 to 1. 

3.2. Implementation results and comparisons 

In this study, the ANN module in the FLUS model contains one input 
layer, 14 hidden layers, and one output layer, with a neighborhood 
window size of 3. For the PLUS model, the neighborhood window is also 
set to 3, while the VCA model uses a neighborhood radius of 600 m. 
When calculating transition suitability, we used 70% of the training data 
and 30% of the validation data in the PLUS and VCA models. We also set 
up 100 decision trees and used out-of-bag cross-validation with boosted 
random sampling and iterated 100 epochs for reliable average accuracy. 
The FLUS model follows the original author's procedure, using 70% of 
the data for training and 30% for validation without cross-validation 
due to the ANN algorithm(Liu et al., 2017). All parameters were set 
using a trial-and-error approach. Simulating with the VCA model, the 
basic unit size is set to 1 ha, 3 ha, 5 ha, 7 ha, 9 ha, and 11 ha, respec-
tively, and the cell size represents the corresponding VCA models. The 
subsequent sections will discuss the influence of cell size on simulation 
accuracy. Considering the accuracy of simulation and landscape pattern 
similarity, this section uses a 5 ha basic unit size example to explore the 
differences in simulation results of various models. 

This study simulated land cover changes in Shenzhen from 2008 to 
2018 to evaluate the effects of different models in the same study area 
and dataset. Table 2 shows model accuracy. The PLUS model has the 
highest overall accuracy, with OA indices about 1.4% and 2.5% higher 
than the VCA and FLUS models. All models have a Kappa coefficient 
exceeding 0.75, indicating overall solid consistency between simulation 
results and observations. The VCA model has the highest FoM, 39.74% 
and 11.00% higher than the FLUS and PLUS models, respectively. 

Table 2 shows that the OA and Kappa of the VCA model are lower than 
those of the PLUS model, while the FoM is higher. According to Fig. 7 
analysis, this is mainly because the VCA model tries to simulate more 
actual changes and reflect more non-construction land transformation to 
construction land. This leads to a higher FoM for VCA model. However, 
some originally stable non-construction lands are wrongly identified as 
construction land by this model, resulting in lower OA and Kappa. 
Considering all indicators, this study confirms the effectiveness of each 
model in simulating land cover change data, with VCA and PLUS models 
performing best. 

Table 3 shows the LI of the three models' simulation results. The 
AREA_MN and ED indices of all three models differ significantly from the 
actual values (AREA_MN deviation >56.1%, ED deviation >22.2%). 
Over the past decade, Shenzhen's construction land expanded signifi-
cantly, filling the gaps and fragments between existing construction land 
patches, and making the urban form more compact. However, none of 
the models fully simulated this feature. Compared to the PLUS and VCA 
models, the FLUS model better simulates urban landscape fragmenta-
tion, aggregation and shape complexity. Compared to the VCA model, 
the PLUS model more accurately reflects the aggregation degree of 
dominant patches, while the VCA model simulates a more compact 
landscape that better maintains urban landscape regularity. 

3.3. District differences in model accuracy 

This study conducted experiments in different districts of Shenzhen 
to explore regional differences. Fig. 4 shows that the FoM significantly 
differs from OA and Kappa. Areas with lower FoM (FoM < 0.2) have 
higher OA and Kappa (OA > 0.90, Kappa>0.85). Areas with the highest 

Fig. 3. Auxiliary dataset ((a) DEM, (b) slope, (c)distance to river, (d)distance to coastline, (e) distance to main roads, (f) distance to railways, (g)distance to the road 
network, (h)distance to subway station, (i) Density of bus stops, (j) distance to hospitals, (k) distance to district centers, (l)distance to school, (m) density of 
entertainment facilities, (n)housing Prices.) 

Table 2 
Accuracy of simulation results via different models.  

Accuracy OA Kappa FoM 

VCA (5 ha) 0.866 0.768 0.373 
PLUS 0.878 0.788 0.336 
FLUS 0.857 0.752 0.265  
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FoM (FoM > 0.26) have lower OA and Kappa (OA < 0.85, Kappa<0.75). 
This is mainly because the OA and Kappa only evaluate the overall 
quantitative consistency between the simulation results and the actual 
land cover (Li et al., 2021b). Significant land cover changes make 
achieving overall classification result consistency challenging, leading 
to lower OA and Kappa values. The FoM pays more attention to the 
ability of the model to identify and measure land cover changes (Liu 
et al., 2017), which can provide a more accurate model effect judgment 
in this case. Therefore, this study focuses more on FoM accuracy, 
comparing OA and Kappa between different models in the same region 
to evaluate model simulation result differences. 

Building on this, we compared the FoM obtained by each model in 
various districts with the EII index (Fig. 5). Fig. 4 shows that the VCA 
model exhibits excellent simulation results in Guangming, Longhua, and 
Longgang districts (exceeding the average by 45%), while the FoM in 
districts such as Futian, Luohu, and Dapeng is lower (FoM < 0.2). This 
closely correlates with the EII index (correlation of 0.79), as Guangming, 
Longhua, and Longgang have rapidly expanded construction land over 
the past decade with high EII values of 2.05%, 1.16%, and 1.00% 
respectively. These districts are less influenced by government policies. 
The high FoM values in these fast-growing districts is consistent with 
previous studies (Yao et al., 2021). In contrast, central urban districts 
like Futian and Luohu are nearing development limits, with a low EII 
value of only 0.15%. Development focus has shifted to urban renewal 
(Li, Chen and Grant, 2021a), such as the transformation of old neigh-
borhoods and industrial areas, making accurate simulation difficult. 
Dapeng district, located on the islands in the southeastern part of 
Shenzhen, has limited construction land expansion (EII = 0.14%) and is 
heavily influenced by marine conservation policy (Zhai et al., 2020), 
further reducing the FoM accuracy of the simulation. 

Although the FLUS model correlates best with EII (0.91), its overall 
FoM is lower than PLUS and VCA models, as it cannot capture land cover 
changes over specific time intervals with a single land cover map, 
leading to lower simulation accuracy. In fast-growing districts like 
Guangming, Longhua, and Longgang, VCA outperforms PLUS, while 
PLUS is slightly better in economically and socially developed districts 
like Nanshan, Futian, and Luohu. This aligns with the EII index, indi-
cating PLUS is more suitable for simulating land cover in mature urban 
districts, while VCA better simulates rapid outward expansion of con-
struction land, like in emerging urban districts. VCA correlates strongly 
with EII (0.79) compared to PLUS (0.67), demonstrating its superiority 
in modeling urban growth. 

3.4. VCA spatial scale sensitivity analysis 

Fig. 6 shows the influence of cell size on VCA model simulation ac-
curacy. Results show the VCA model is susceptible to cell size. As cell 
size increases, OA, Kappa and FoM indices gradually decrease. FoM 
decreases significantly within 5-7 ha (48.7% of the total decrease). 
When the cell exceeds 6 ha, Kappa drops below 0.75. However, the 
landscape pattern similarity of results increased markedly with 
increasing cell size, reaching the highest value of 94.6% at a cell size of 
10 ha, then started to decrease. At relatively small cell sizes, the rapidly 
increasing number of patches and edge density led to landscape frag-
mentation, thus resulting in a sharp decline in landscape similarity 
(reduced by 73.4% in the study area). However, excessively large cell 
sizes could also cause the simulated landscape pattern to deviate from 

reality, thus leading to the decreased landscape pattern similarity when 
cell size was >10 ha. Therefore, considering simulation accuracy and 
landscape pattern similarity, this study selected a cell size of 5 ha as the 
basic simulation unit, enabling simulation results to match actual data 
well and express land cover structure and spatial distribution charac-
teristics well. This size is also one of the basic units for large-scale land 
development and management. 

We implemented the models on a computer with an Intel(R) CoreTM 
i7–10,700 2.90 GHz CPU, NVIDIA GeForce GT 1030 GPU, 32GB memory 
and Windows 10. All models use C++ programming language. Table 4 
reports the time overhead of different models. The raster-based CA 
model has higher computational efficiency than the VCA model. Raster 
data has a regular structure and less topological information, enabling 
fast calculation (Lu et al., 2020). Vector data is more complex. The 
smaller the cell size, the more data and computing resources required for 
simulation. Therefore, the FLUS and PLUS models are more suitable for 
large-scale land cover simulation scenarios due to their high efficiency. 
In contrast, VCA models are more suitable for small-scale simulation 
scenarios. 

Finally, this study conducted a two-way analysis of variance using 
SPSS Statistics 25 to compare the effects of cell size and study scope on 
VCA model FoM(Gamst, Meyers, & Guarino, 2008). In the two-factor 
test, we considered the FoM of the VCA model with different cell sizes 
from 1 ha to 11 ha in each of the 10 districts of Shenzhen. In statistics, F- 
value, partial Eta squared and mean square are used as measures of 
factor effect size. The results demonstrated that both cell size (F =
52.223, partial eta squared = 0.853, mean square = 0.008) and study 
scope (F = 914.242, partial eta squared = 0.995, mean square = 0.137) 
significantly affected model accuracy. The F value, partial eta square 
and mean square corresponding to the study scope factors are much 
higher than the cell size, indicating that the influence in the model is 
greater. 

3.5. Details of the implementation results of different models 

Fig. 7 compares the simulation results of different models and selects 
four local areas. According to previous studies (Huang, Huang, & Liu, 
2019; Zhang et al., 2023), the selected areas are divided into three 
categories, which are described as follows: 1) Located in the adjacent 
areas to large existing construction land patch. Newly generated large- 
scale construction land patch fill the blank between existing construc-
tion land patches and connect to each other, such as Part 1, which is 
located in Guangming; 2) Various forms of construction land growth 
such as filling and edge expansion, such as Part 2, Part 3 and Part 4, 
which are located in Longhua, Nanshan and Longgang District respec-
tively. 3) There is a leap-like growth of construction land, where new 
construction land patches appear far away from the original boundaries, 
such as Part 5, in Dapeng. 

Figs. 4 and 7 show that the smaller the cell size, the higher the 
simulated construction land expansion and actual value matching de-
gree. Too large a cell size ignores spatial heterogeneity information and 
produces significant boundary effects, affecting spatial distribution 
matching degree (Liang et al., 2021a). Too small a cell size also leads to 
land fragmentation. Therefore, an appropriate cell size should be 
selected for the VCA model. 

Part 1 shows PLUS model land expansion simulation is closer to re-
ality than FLUS. However, both models are limited to simulating the 

Table 3 
LI of the simulated results based on different models.   

AREA_MN ED LPI AI LSI PAFRAC α1 

Actual 218.624 17.831 45.709 97.217 22.615 1.300 / 
VCA(5 ha) 83.066 23.156 49.161 96.417 28.396 1.325 78.71% 
PLUS 64.337 23.372 45.544 95.960 34.520 1.321 73.74% 
FLUS 96.028 21.778 46.095 96.624 26.888 1.294 83.49%  
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expansion of construction land changes only in existing urban patch 
peripheral areas. In contrast, the VCA model better simulates filling 
construction land expansion patterns. Part 2 is in Longhua District, 
where construction land expanded significantly, extending outward to 

form a “peninsula”-like area. The newly added construction land in Part 
4 fills the original edge depression and expands outward. In these two 
areas, The FLUS and PLUS models show only slight expansion along the 
original boundary in these areas. In contrast, the VCA model with a 

Fig. 4. The simulation accuracy of different CA models in district.  
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smaller cell size simulates the orientation and amplitude of actual con-
struction land expansion and evolution. This indicates that the VCA 
model can effectively guide urban growth to concentrate in areas with 
strong local effects, better simulating urban growth details and diversity 
and adapting well to complex urban growth patterns. 

Construction land growth tends to be stable with a slowing growth 
rate in Parts 3 and 5. The PLUS model performs well here, while the 
FLUS and VCA models show insufficient or excessive simulation 

expansion phenomena. Moreover, the VCA model exacerbates the above 
defects as the cell size increases. In addition, the PLUS model simulates 
the approximate location of the newly added construction land block 
below Part 5, reflecting the model's proposed “multi-type random patch 
seed mechanism.” In summary, most of the construction land growth 
simulated by the PLUS model is expanding outward along existing 
construction land edges, indicating this model's neighborhood effect 
calculation method can better characterize surrounding unit influence, 
easily capturing edge expansion urban growth characteristics (Zhang 
et al., 2023). 

4. Discussion 

Existing research on the applicability and spatial scale sensitivity of 
VCA and raster-based CA models in simulating land cover change is 
limited. This study uses Shenzhen as the study area, employing FLUS, 
PLUS and VCA models to simulate land cover change, conducting in- 
depth quantitative analysis from multiple perspectives including simu-
lation accuracy, land cover change patterns, and model efficiency. The 
results demonstrate that both VCA and PLUS models achieved higher 
accuracy (OA > 0.85, Kappa>0.75, and FoM > 0.3), demonstrating their 
applicability in handling land cover data. Specifically, the simulation 
FoM accuracy of VCA model reaches the highest level, increasing by 
39.74% and 11.00% over the FLUS and PLUS respectively. Furthermore, 
findings show the VCA model can guide construction land growth to 
concentrate in areas with strong local effects, better simulating land 
cover change spatial heterogeneity and complexity. This provides a new 
attempt and exploration for scientifically explaining land cover change 
at the process level. 

This study also analyzes the applicability of VCA model and PLUS 
model in simulating different construction land expansion patterns. The 
study introduces the EII to measure construction land intensity and 
evaluates the performance of each model in different regions. The results 
show that in rapidly expanding newly developed urban areas (i.e., areas 
with high EII values), VCA model shows the highest FoM value and 

Fig. 5. The correlation between the FoM (y-axis) of VCA (a), PLUS (b), and FLUS (c) and EII index. (d) Simulation accuracy and EII of the three models in 
different districts. 

Fig. 6. Cell size sensitivity analysis of VCA.  

Table 4 
Efficiency of different models.  

Model 1 ha 3 ha 5 ha 7 ha 9 ha 11 ha PLUS FLUS 

Time (Minute) 30.1 14.2 6.5 5.8 5.2 4.9 4.0 4.9  
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achieves the best simulation performance. Compared with the FLUS and 
PLUS models, VCA model has significant advantages in simulating the 
infill construction land expansion and can more accurately simulate 
urban expansion direction and scope (Section 3.3). In contrast, PLUS 
model is more suitable for simulating land cover change in relatively 
mature central urban districts and underdeveloped suburban areas, 
which often have lower EII values. The PLUS model can better simulate 
edge expansion of construction land, and its unique “multiple-type 
random patch seeding” mechanism can partially capture the leapfrog 
growth of construction land patches. Moreover, based on raster data, 
PLUS model runs faster and more efficiently, providing greater simula-
tion superiority over the VCA model in large study areas. Therefore, 

choosing the appropriate CA model according to the regional develop-
ment characteristics and model advantages can effectively improve the 
accuracy and efficiency of urban growth simulation. Furthermore, 
coupling or integrating different models can be explored to enhance 
simulation accuracy and flexibility. 

This study analyzes the spatial scale sensitivity of VCA model and 
explores the spatial heterogeneity of land cover change at different 
scales. The results show that as the cell size increases, the simulation 
accuracy gradually decreases, while the landscape pattern similarity 
significantly increases. However, this increase is not unlimited. During 
urban expansion, new urban spatial elements lead to increasingly scat-
tered and fragmented urban spatial morphology (Shen et al., 2019). 

Fig. 7. Details of simulation results of different models.  
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Excessively large cells cannot reflect urban spatial morphology detailed 
complexity. Excessively small cells lead to overly rich internal details, 
increasing noise and over-fragmenting the landscape (Liang et al., 
2021a). Moreover, reducing cell size requires greater computational 
power, significantly reducing model efficiency. The study also finds that 
among the ten districts in Shenzhen, the study scope has a greater 
impact on the model than the cell size, indicating that considering 
regional differences is crucial for the model. Therefore, choosing cell 
size must comprehensively consider study scope and data characteris-
tics, balancing model accuracy and landscape continuity. Land cover 
change is a complex multi-scale, multi-mechanism system problem. A 
single modeling or parameter quantification method can only partially 
capture inherent laws and dynamic characteristics (Li et al., 2023). This 
study provides scientific methods and data support for land cover 
change modeling and scale sensitivity analysis. 

Some shortcomings remain in this study. The experiments were 
conducted only in Shenzhen, without examining the influence of 
different geographic environment and socio-economic factors to test the 
generalizability of the VCA model. Additionally, this study focused 
solely on the spatial scale's impact on the VCA model, using simple 
neighborhood strategy and single conversion rule, without conducting 
comprehensive impact assessment. Future study can expand in two main 
directions: First, expand the scope of study and test models in more 
diverse regions. However, this will face greater challenges as it requires 
more data sources, which may lead to mismatches and stronger spatial 
heterogeneity between heterogeneous data. Second, considering not 
only the cell scale but also other parameters such as neighborhood 
strategies and transition rules, and performing in-depth sensitivity 
analysis of parameters. However, considering more parameters may 
introduce the issue of local minima in the parameter space optimization 
for comprehensive evaluations. This will pose a more challenging 
problem of optimizing parameter combinations. In summary, through 
the optimization of methods and techniques, the model may have 
greater scientific value and application prospects. 

5. Conclusion 

Aiming at the applicability and spatial scale sensitivity of the VCA 
model in land cover change simulation, this study used VCA, PLUS and 
FLUS models to simulate Shenzhen land cover change and conducted a 
systematic comparative analysis. Results show that both VCA and PLUS 
models demonstrate good applicability to land cover data. Different 
models have their advantages in mining the changes in urban land scale, 
intensity and spatial distribution. The VCA model is suitable for 
exploring land cover change mechanisms in newly developed urban 
areas with rapid construction land expansion, typically characterized by 
high EII values. The PLUS model suits change patterns of mature central 
urban or lagging suburban areas, often with lower EII values. Moreover, 
the PLUS model exhibits high simulation efficiency, particularly in 
large-scale study areas. Cell size is a crucial VCA model simulation effect 
affecting parameters. Excessively small cell size leads to improved ac-
curacy but reduces landscape pattern similarity. Additionally, we found 
that the impact of sdudy scope on the accuracy of the VCA model is 
greater compared to cell size. 

This study provides theoretical and technical support for land cover 
change research and urban planning management. Based on results, we 
suggest planners or policymakers fully consider land cover change 
characteristics and trends in different regions when formulating overall 
cover planning and construction land scale control planning. Select 
appropriate CA models and cell size to simulate and predict, to realize 
the optimization of land cover patterns and the economic and intensive 
use of land resources. Future study will conduct experiments in more 
different study areas, and explore multiple parameters in depth, 
including cell size, neighborhood definition and conversion rule, to 
reveal the complex synergistic effects, and improve the accuracy of land 
cover change simulation. 
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