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Accurate Estimation of the Proportion of Mixed
Land Use at the Street-Block Level by Integrating
High Spatial Resolution Images and
Geospatial Big Data

Jialyu He, Xia Li

Abstract— Mixed land use has been widely used as a planning
tool to improve the functionality of cities. However, depicting
mixed land use is rather difficult due to its complexities. Previous
studies have decomposed urban land areas using either remote
sensing images or geospatial big data. Few studies have combined
these two data sources because of the lack of methodologies. This
article proposed an end-to-end two-stream convolutional neural
network (CNN) for combining features (CF-CNN) to estimate
the proportion of mixed land use by integrating high spatial
resolution (HSR) images and geospatial big data of real-time
Tencent user density (RTUD) data. Two deep learning networks,
one for image information extraction and other for human
activity-related information extraction, are used to construct two
branches of CF-CNN. The mixed land use can be described by
calculating the proportions of each land use type at the street-
block level. Compared with methods for using single-source data,
CF-CNN obtained the highest classification accuracy. We further
applied the Shannon diversity index (SHDI) to quantify the
agglomerated urban mixed land use. The Spearman correlation
coefficients among the SHDI, community distance, and neigh-
borhood vibrancy were calculated to verify the effectiveness
of the mixed land use composition. Qur framework provided
an alternative way of identifying mixed land use structures by
integrating multisource data.

Index Terms—Deep learning, high spatial resolution (HSR)
images, mixed land use, real-time Tencent user density (RTUD),
remote sensing.

Manuscript received February 25, 2020; revised April 22, 2020, June 14,
2020, and August 15, 2020; accepted September 26, 2020. This work was
supported in part by the Key National Natural Science Foundation of China
under Grant 41531176 and in part by the National Key Research and Devel-
opment Program of China under Grant 2017YFA0604402. (Corresponding
author: Xia Li.)

Jialyu He, Xinxin Wu, Jinbao Zhang, and Dachuan Zhang are with
the Guangdong Provincial Key Laboratory of Urbanization and Geo-
simulation, School of Geography and Planning, Sun Yat-sen University,
Guangzhou 510275, China (e-mail: hesysugis@foxmail.com; wuxx33@
mail2.sysu.edu.cn; kampau@foxmail.com; zhangdchgis @foxmail.com).

Xia Li and Xiaojuan Liu are with the Key Laboratory of Geographic
Information Science (Ministry of Education), School of Geographic Sci-
ences, East China Normal University, Shanghai 200241, China (e-mail:
lixia@geo.ecnu.edu.cn; liuxj58 @mail2.sysu.edu.cn).

Penghua Liu is with the Alibaba Group and Ant Group, Hangzhou 311121,
China (e-mail: penghua.lph@alibaba-inc.com).

Yao Yao is with the School of Geography and Information Engineer-
ing, China University of Geosciences, Wuhan 430078, China (e-mail:
yaoy @cug.edu.cn).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2020.3028622

, Penghua Liu, Xinxin Wu, Jinbao Zhang, Dachuan Zhang™, Xiaojuan Liu, and Yao Yao

I. INTRODUCTION

UE to the rapid development of cities and universal urban

renewal projects, especially in mega cities, single land
use cannot satisfy the growing demands of human living.
Instead, mixed land use has gradually become a desirable
choice to ensure urban habitability [1]. In urban planning,
cities are usually divided into land parcels of various types
according to their local geographical conditions and human
activities [2]. Mixed land use is composed of two or more
types of land use, such as industrial zones, commercial zones,
and residential districts, in a land parcel to simultaneously
provide services for different groups [3].

As the key feature of mega cities, mixed land use can
support urban livability by reducing the commuting distances,
promoting the neighborhood vibrancy, and increasing the
walking-to-driving ratio [4]-[6]. Nevertheless, mixed land use
can also introduce some problems to urban development.
For instance, a mixed land parcel that combines commercial
zones, industrial zones, and residential districts may produce
excessive noise, traffic congestion, or environmental pollu-
tion [7]-[9]. In contemporary urban planning, the spatial
distribution of mixed land use can help in understanding
the spatial pattern of the city. The information about the
internal components of a city is generally quantified to assess
their impact on urban development [10]. To measure the
mixed degree of land use, urban planners introduced various
indicators, such as the Shannon or Simpson indexes [11].
The assessment results can also provide support for urban
planning and policy making. Hence, the spatial distribution
and composition of urban mixed land use are essential tools
for urban planners. The most common methods for mapping
urban land are field surveys and manual interpretation using
satellite images, which are both time consuming and labo-
rious [12]. In particular, the implementation of the manual
approach is considerably more challenging when the land
parcels have mixed land use types. Thus, the urban mixed
land use depiction has attracted extensive attention from urban
planners.

However, research teams disregarded the phenomenon of
urban mixed land use due to its complexity. The quantita-
tive measurement of mixed land use is a challenging task,
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especially without fine-scale ground truth validation data.
Existing studies have attempted to portray mixed land use
using methodologies that were modified from conventional
land use classification frameworks [13]. To reveal the spatial
structure of cities, these studies usually segmented cities into
blocks by community boundaries or road networks [14], [15].
The components of various types of land use were obtained at
the block level to describe the mixed land use. In these studies,
remote sensing images or geospatial big data (traditional
remote sensing images collected by satellites or unmanned
aerial vehicles are not included in geospatial big data in
this article [16]) are still the primary data sources. The nat-
ural physical properties, socioeconomic features, and human
activity-related information contained in multisource data are
highly relevant to urban functional types [17]. Since existing
studies on the identification of mixed land use are mainly
based on single-source data, the integration of multisource data
has the potential to enhance the performance of mixed land
use depiction.

It has been a challenge to fuse these features extracted
from multisource data to enhance the recognition power of
the models for ground objects. A variety of models, such as
hierarchal clustering [18], semantic information fusion [19],
and deep learning techniques [20], have been introduced to
integrate multisource data. The advantage of multisource data-
based models is that they can simultaneously leverage the
visual information of remote sensing images and the human
activity-related information of geospatial big data to predict
the land use at an urban-object level. Deep learning techniques
have attracted a substantial amount of attention due to their
strong capabilities for processing spatiotemporal data [21].
As the prototype of deep learning networks, convolutional
neural networks (CNNs) have been rapidly developed and have
achieved better performance than other baseline models (e.g.,
logistic regression, random forest, and support vector machine
models) in various fields, including image processing [22],
text analysis [23], and semantic segmentation [24]. Features
extracted by CNNs are also practical for the representation of
ground objects [25], [26].

Inspired by these advantages of CNNs, this article pro-
poses an end-to-end two-stream CNN for combining fea-
tures (CF-CNN) to estimate the accurate proportion of mixed
land use by simultaneously processing high spatial resolution
(HSR) images and geospatial big data. Specifically, two CNN
architectures were employed for visual feature extraction of
HSR images and human activity-related feature extraction of
geospatial big data. These two types of CNN features were
concatenated to provide CF-CNN with the ability to process
multisource data. To verify the effectiveness of CF-CNN,
we also separately classified land use using two deep learning
networks for comparison. Our experiments were carried out
in four districts of Guangzhou, which is one of the mega
cities in China. The street-block data were utilized to divide
the study area into 2931 units to calculate the proportions
of land use types. Based on these proportions, we quantita-
tively measured the mixed land use pattern using the Shan-
non diversity index (SHDI) and analyzed its contribution to
Guangzhou.
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II. RELATED WORK

Most land use classification projects can be completed by
separately applying two primary data sources: remote sensing
images and geospatial big data. For a particular ground object,
remote sensing images can provide features related to its
natural physical properties, including the spectrum, texture,
and shape. Conversely, geospatial big data can provide various
features related to socioeconomic environments and human
activities [27]. Both types of features have an important role
in land use classification. Still, the approaches to processing
remote sensing images or geospatial big data are different
due to their various data structures. Therefore, this section
provides an overview of the methodologies based on single-
source data (remote sensing images and geospatial big data)
and multisource data, as well as the mixed land use depiction.

A. Remote Sensing Image-Based Methods

With a continuous breakthrough in remote sensing technol-
ogy, land use classification based on remote sensing images
is undergoing an unprecedented development. Previous stud-
ies have identified land use by feeding the natural physical
features extracted from remote sensing images into classi-
fiers [28]-[30]. The variety of remote sensing images has
spawned numerous data processing methods. Traditional meth-
ods tend to extract the spectral, texture, or other attribute
features of each research unit, thus generating feature vectors
through different feature construction modes, such as feature
concatenation [31], low-rank representation [32], and semantic
models [33]. The primary research units are gradually con-
verted from pixels to objects and scenes to better depict land
parcels in a city. HSR images are available to enhance the
performance of land use classification. However, extracting
these handcrafted features require a considerable amount of
engineering skill and domain expertise [34]. In particular,
the large volume of HSR images requires high efficiency
and performance of the model [35]. To solve these issues,
more advanced and automated algorithms have been applied in
recent years, the most attractive of which is the deep learning
technique due to its ability to automatically extract higher
level feature representations [36]-[39]. Many researchers have
adequately trained deep learning models to classify the land
use by building remote sensing databases with high quality,
such as UC-Merced [40], Whu-SIRI [41], and AID [42].
In the absence of high-quality remote sensing databases,
transferring pretrained networks to remote sensing researches
has been shown to be effective and time saving due to their
high performance for classifying traditional image databases.
In addition, the function of deep learning models has been
improved by adding other mechanisms, i.e., domain adaptation
[43], atrous convolutions [44], and attention mechanism [45].

B. Geospatial Big Data-Based Methods

Geospatial big data are extensively employed in land use
classification tasks due to their rich and diverse character-
istics [27]. Carriers of geospatial big data, such as mobile
phones, global positioning system devices, and laptops, can
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provide information about socioeconomic environments and
human activities [46]. Previous studies have utilized a variety
of geospatial big data to retrieve information about urban
spatial structures. Yuan et al. [47] extracted human mobility
patterns from floating car trajectories as a word to infer the
functions of urban land parcels by applying a topic-based
inference model. Pei er al. [48] proposed a semisupervised
clustering algorithm to identify land use using standardized
hourly call volume and total call volume obtained from mobile
phone data. Chen et al. [49] applied a dynamic time warping
distance-based k-medoids method to cluster the curves of
population density to infer urban functions. Similar to remote
sensing image-based methods, deep learning techniques have
achieved a high level of performance in the geospatial big data
processing. The difference is that deep learning frameworks
based on big data are more diversified due to the diversification
of big data structures. The variants of deep learning techniques
have been proven to be effective in processing a wide range of
geospatial big data, such as points of interest [46], air quality
data [50], and spatial trajectories [51].

C. Multisource Data-Based Method

Solving problems by integrating multisource data has been a
research hotspot in recent years [52]. Compared with single-
source data, multisource data can contain more information
and achieve complementary advantages, which is conducive
to making decisions about the same problem on multiple
scales and perspectives [16]. Feature fusion is the most com-
monly applied strategy in multisource data integration; in this
strategy, feature engineering is critical because it affects the
quality of feature concatenation. For example, Zhang et al.
[53] applied Weibo and points of interest to enhance the perfor-
mance of classification based on remote sensing images. The
density of geospatial big data was calculated to combine with
the images. Liu et al. [19] constructed a framework to classify
the urban land use by extracting semantic-level features from
HSR images and geospatial big data. The semantic-level
features are concatenated to obtain the final representation
of the urban land parcel. However, these methods still have
a common deficiency: although integrating multisource data
through feature engineering can improve the accuracy of clas-
sification, the inconsistent data structures and feature dimen-
sions might increase the complexity of the entire framework,
thus requiring substantial expert knowledge and experimental
time. Therefore, multistream CNNs have become increasingly
attractive due to their strong unsupervised feature learning
ability for multisource data. High-dimensional and abstract
features can be automatically extracted. The integration of
these CNN features is effective for classification tasks, whether
the CNNs are built as an end-to-end model or individually
serialized to construct the final classifier [22], [54].

D. Mixed Land Use Depiction

The quantitative measurement of a mixed degree is usually
carried out based on the proportion of each component in a
fixed unit. Therefore, how to obtain the ratio of various types
of land use is a keypoint that needs to be solved urgently.
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Fig. 1. Study area with street blocks in Guangzhou.

Huang et al. [13] applied a skeleton-based decomposition
method that integrates deep learning techniques to map the
urban land use with HSR images to calculate the mixed com-
position of each land parcel. Zhang and Du [15] decomposed
urban scenes in land parcels by modifying the pixel unmixing
method. Wu et al. [2] proposed an urban function base curve
for decomposing urban mixed land use based on the temporal
activity signatures extracted from check-in data. Xing et al.
[14] constructed a dynamic human activity-driven model that
integrates a massive amount of Twitter messages to assess
the mixed land use patterns. All these studies have attempted
to extract the information from a single data source, such as
HSR images or check-in data, to identify the composition of
various land uses and measure the mixed degree on the scale of
urban land parcels. However, they neglected to integrate these
multiperspective informations to improve the representational
ability of the model. Thus, it is worthwhile to put forward
a method to depict the mixed land use based on multisource
data.

III. STUDY AREA AND DATA SETS

A. Study Area and Data Collection

As the capital of Guangdong Province, Guangzhou is
located in the Pearl River Delta, a fast-growing region in China
[55]. Constrained by a limited amount of available land and
a large number of inhabitants, Guangzhou is characterized by
complex land use patterns. Some land parcels in Guangzhou
are highly mixed and difficult to decompose [11]. In this
article, we chose several central urban regions of Guangzhou
as the study area, namely, Haizhu district, Yuexiu district,
Tianhe district, and Liwan district (refer to Fig. 1). These four
districts cover a total area of 303.27 km?. An HSR image of
the study area in 2018 was downloaded from Google Earth; the
image contains three spectral bands. The spatial resolution of
the image is approximately 1.16 m, and the size of the image
is 23756 x 19548 pixels. To obtain the mixed composition
of the land parcels, the street-block data were employed to
segment our study area. In total, there are 2931 street blocks.
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Fig. 2. RTUD data in the study area. (a) 8:00 A.M., (b) 12:00 P.M., and (c)
6:00 P.M. on a workday and (d) 8:00 A.M., (e) 12:00 P.M., and (f) 6:00 P.M.
on a holiday.

Real-time Tencent user density (RTUD) data were selected
as the geospatial big data to provide human activity-related
information. Our RTUD data were collected from Tencent, one
of the largest Internet enterprises in China [49]. More than 800
million people have accounts on the platform. User locations
(addresses) are recorded when they are using location-related
services such as Tencent Map or WeChat, thus enabling the
RTUD data to store the population distribution of the current
period. Compared with other conventional population density
maps, the RTUD data have a higher spatiotemporal resolution.
Tencent’s platform marks each user position per hour in
a fixed range, with a spatial resolution of approximately
27.05 m, rendering it ideal for fine-scale urban studies. Hence,
we applied a web crawler tool to grab the RTUD data for a
week as raster images. The population density raster images
have 24 bands, representing 24 h of the day. According to
previous studies using population density data, the trajectory
of human activity significantly varies under the influence of
weekdays and holidays [49], [56]. To effectively represent
the dynamic human mobility, we divided the RTUD data
into two parts: the population density on weekdays and the
population density on holidays. Fig. 2 shows the raster images
of the RTUD data at three different times. The pixel value
of each image represents the average number of people at
the corresponding time within the pixel extent, obtained by
averaging the data of weekdays and holidays.

B. Samples for Training the Deep Learning Networks

Guangzhou has seven major types of land use: public
management services, industrial zones, green land, commercial
zones, residential districts, urban villages, and vacant land.
We estimate the proportion of mixed land use by counting
the number of image blocks of each type. The image block
size of each pure scene was set to 128 pixels (approximately
150 m) based on our HSR image according to previous studies
[13]. The label of each image block was tagged by manual
interpretation [57]. We simultaneously obtained the samples
from the HSR image and RTUD data. Figs. 3 and 4 show
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(2)

Fig. 3. Sample images collected in Guangzhou. (a) Public management
services. (b) Industrial zones. (¢) Green land. (d) Commercial zones. (e)
Residential districts. (f) Urban villages. (g) Vacant land.

the sample images and sample curves of each land use type.
We selected 2100 samples, including 300 samples per land use
class for training.1 Likewise, we selected another 350 samples,
comprising 50 samples per land use type, to test our trained
model. Considering the difference in the spatial resolution
between the HSR image and the RTUD data, we selected the
corresponding image block of the same area based on each
sampling point and took the average population density of each
time period in the block as the RTUD feature. Fig. 4 shows the
averaged time-series population density curves of the training
sample points for each land use type. The heterogeneity of
the temporal feature curves is evidence of the effectiveness
of the RTUD data for land use classification. We set each
sample of the RTUD data to D(w) = {Pwi, Pu2,---» Pyn}
for weekdays and D(h) = {Pni, P2, ..., Ppn,} for holidays,
where Py; and P,; are the population density at time j on
weekday and holiday, respectively. Unlike traditional images,
the RTUD data composed of D(w) and D (k) will be input into
the deep learning networks as a vector with 48 dimensions,
which represents the 24 h of weekdays and holidays.

IV. METHODOLOGY

The proposed framework (CF-CNN) consists of a simplified
residual network (SRes-Net) and a modified Visual Geometry
Group network (PVGG-Net). The main goal of the CF-CNN
is to estimate the proportion of urban mixed land use by fusing
features extracted from multisource data. Our framework can
be divided into five parts: 1) we simplified the conventional
residual neural network (ResNet) as the SRes-Net and used
it to classify the HSR images; 2) due to the particularity of
the RTUD data, we introduced a 1-D PVGG-Net, which was
modified based on a VGG16 network; 3) we randomly selected
samples to train these two deep learning networks, and the
street-block data were utilized to segment the study area into
land parcels; 4) we employed the two independently trained
deep learning networks as feature extractors to construct a
two-stream CF-CNN by concatenating the extracted features
before the last classifier; and 5) at the street-block level,

IThe code and dataset are downloadable at

SysuHe/MultiSourceData_ CFCNN

https://github.com/
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Fig. 4. RTUD curves of the samples collected in Guangzhou. (a) Public management services. (b) Industrial zones. (c¢) Green land. (d) Commercial zones.

(e) Residential districts. (f) Urban villages. (g) Vacant land.

relu relu relu
Conv, 1x1 H Conyv, kxkl—bl Conv, 1x1
(a)
relu
(b)

Fig. 5. Two types of residual blocks.
(b) Convolutional block in Fig. 6.

(a) Identity block in Fig. 6.

we counted the number of land blocks for each category so
that the percentage can be eventually calculated as the final
mixed proportion maps.

A. Simplified ResNet Network

ResNets were introduced by He et al. [58] to ease the
training process of deep learning networks. The core idea of
ResNet is to establish the skip connections between a layer and
its subsequent layer, which are called residual blocks (refer
to Fig. 5). The residual blocks allow the network to capture
more abstract image information with a deeper structure.
Generally, ResNet is designed to include as many layers as
possible to enhance the representation ability of the nonlinear
characteristics of the network. Nevertheless, a network with
so many layers is not needed, because it is still too deep for
our image data set. Thus, we adopted the SRes-Net based
on the simplest ResNet model, rendering it more suitable for
our data set. As shown in Fig. 6, the structure of the SRes-
Net contains one convolutional layer, one max pooling layer,
six residual blocks, two dropout layers, a seven-way fully
connected layer, and a softmax classifier. Two main types of
residual blocks are shown in Fig. 5: the identity block and
the convolutional block. The identity block can reduce the
number of parameters for network training using a parameter-
free identity shortcut, while the convolutional block is used
for the matching dimension [59]. To reduce the number of

parameters for training, we applied these two types of residual
blocks in our structure. Every residual block contains three
convolutional layers with sizes of 1 x 1,3 x 3, and 1 x 1.

B. 1-D Deep Learning Network

Given the significant modal differences between the RTUD
data and the HSR image, the methods for extracting their
features should also be different. Modified from VGG-16 [60],
we applied a 1-D deep learning network for processing the
curves of population density (PVGG-Net). The advantage of
the PVGG-Net is that it can extract the temporal information
about human activity from the RTUD data through multiple
1-D convolutional layers, which are designed to process 1-D
temporal data [61]. Concerning the structure of WaveNet [62],
we introduced atrous convolutional layers into the PVGG-Net
to increase the receptive field of the convolution kernel without
losing the time sequence information. As shown in Fig. 7,
the structure of the PVGG-Net contains five 1-D convolutional
layers, two fully connected layers, and a softmax classifier. The
size of all the convolution kernels was set to 3 to obtain a more
abstract feature. The dilation rate of the atrous convolutional
layers is set to 2. Another three dropout layers were added to
avoid overfitting caused by a massive amount of parameters
and interdependence among neuron nodes. The probability
of neuron inactivation was set to 25% and 50% in different
layers. At the end of the network, we adopted a seven-way
fully connected layer and a softmax classifier to obtain the
classification results.

C. Estimating the Proportion of Urban Mixed Land Use

Both previously described models have very similar bottle-
neck layers, followed by a seven-way fully connected layer.
As shown in Fig. 8, we can concatenate these two CNN
bottleneck layers since they have been verified as a good
representation of the input [26], [63]. For the ground object
of the same location, we simultaneously input the HSR image
blocks and the population density curves into the network.
Both networks (SRes-Net and PVGG-Net) merely keep the
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part of feature extraction by discarding the last layer. The fully
connected layers in each network were retained to extract the
features from multisource data. Later, the extracted features
were concatenated into the final high-dimensional feature
vector. A fully connected layer and a softmax classifier were
applied to obtain the classification result by feeding the final
high-dimensional feature vector. Based on the classification
results of each block, we can obtain the proportion maps by
calculating the percentages of all the land use categories. The
equation of the proportion is expressed as

— Tk
S

where p;; represents the proportion of the kth category in the
ith land parcel, and n; is the total number of land blocks of
the kth category.

To further characterize the urban mixed use pattern in the
land parcels, we applied entropy indices to the measurement
of the land use diversity. Generally, most of the indicators
that characterize the mixed land use pattern are derived

pik i=1,2,...,N (1)

from landscape ecology. Considering the similarity among
the landscape indices, we chose the SHDI [64]. The function
corresponding to the SHDI is expressed as

K;

=Y puln(py) i=1.2,....N
k

S;

2

where K; is the total number of urban land use categories in
the ith land parcel, and p;; represents the proportion of the kth
category. When there is only one category of land inside the
local land parcel, the value of S; is 0. Otherwise, the value of
S; will be larger if the land parcel contains multiple categories
of land use.

V. RESULTS

In our experiments, 2100 selected samples were used for
model training, while the other 350 samples were used for
model testing. Both deep learning networks of the CF-CNN
were set as the feature extractor to extract the features from
the HSR images and RTUD data. The dimensions of the
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Structure of the proposed CF-CNN (constructed by the SRes-Net and PVGG-Net). The extracted features are concatenated into the final dropout,

seven-way fully connected layer, and softmax classifier to classify the label of input image block.

two CNN features were fixed at 1024. We then concatenated
these two feature vectors into one 2048-D CNN feature.
The 2048-D feature vector was regarded as the representa-
tion of each sample based on multisource data integration.
A seven-way fully connected layer and a softmax classifier
were added at the end of the CF-CNN to obtain the final
classification result. To compare with the single-source data-
based method, we conducted the experiments merely using
the SRes-Net or PVGG-Net. The HSR images and RTUD
data were applied as input data for these two comparative
experiments. In addition to comparing the accuracy curves
of all deep learning models, we also employed the confusion
matrix, overall accuracy, and Kappa coefficient as the criteria
for model evaluation. To depict the mixed land use of the
study area, we utilized the scanning window to obtain the
image blocks. All image blocks were entered into the trained
CF-CNN for classification. The mixed land use was revealed
through the statistics of various components in each land
parcel. Furthermore, we applied the SHDI to characterize the
mixed land use and conducted a Spearman correlation analysis
among the SHDI, community distance, and neighborhood
vibrancy to illustrate the effectiveness of our results.

A. Validation of the CF-CNN Framework

The 2100 training samples were divided into two parts:
80% of the samples were used for model training, and the
remaining 20% were used for model validation. The learning
rate of the training step, maximum number of iterations, and
batch size of each training step for the SRes-Net were set
to 0.0004, 100, and 16, respectively. The learning rate of
the training step, maximum number of iterations, and batch
size of each training step for the PVGG-Net were set to
0.0005, 100, and 16, respectively. When we trained the CF-
CNN with multisource data, the learning rate of the training
step, maximum number of iterations, and batch size of each

14,000

1.000
vited 12000
0800
.70 100
500 000
0500
ol 6.000
0300 £000
0.200 .
0100 B
o

000 DAMHY
L 5 S0 75 1 o

—Training — Validation

(a) (b)

25 0 7 100
~Training —Validation

Fig. 9. Curves of accuracy (y-axis) and cross-entropy loss (y-axis) with
the number of iterations (x-axis) for the SRes-Net. (a) Accuracy. (b) Cross-
entropy loss.
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Fig. 10. Curves of accuracy (y-axis) and cross-entropy loss (y-axis) with

the number of iterations (x-axis) for the PVGG-Net. (a) Accuracy. (b) Cross-
entropy loss.

training step were set to 0.005, 100, and 16, respectively.
All experiments were run on a server running Windows and
using the GeForce GTX 1060 GPU. We selected the Keras
library in Python 3.5 for network construction and training.
For 100 iterations, the training time was 22-25 min for the
CF-CNN, 18-20 min for the SRes-Net, and 3—4 min for the
PVGG-Net.

Figs. 9-11 show the curves of accuracy and cross-entropy
loss during training process of three deep learning networks
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Fig. 11. Curves of accuracy (y-axis) and cross-entropy loss (y-axis) with the
number of iterations (x-axis) for the CF-CNN. (a) Accuracy. (b) Cross-entropy
loss.

(SRes-Net, PVGG-Net, and CF-CNN). With the iterations of
the models, the training accuracy of the SRes-Net and the CF-
CNN approached 1.000, while the training accuracy of the
PVGG-Net reached 0.923 after approximately 50 iterations.
The validation accuracy of the three models also reached
0.940 (CF-CNN), 0.886 (SRes-Net), and 0.845 (PVGG-Net)
among which the CF-CNN obtained the highest validation
accuracy. All the curves eventually tended toward stability.
Furthermore, by tracking the cross-entropy metric, the value
of the training loss and validation loss rapidly decreased in the
initial stage and converged after approximately 40 iterations.
There was no obvious overfitting during the training process.
To evaluate the effectiveness of the fused CNN features,
the testing accuracies of the SRes-Net and PVGG-Net were
compared with the testing accuracy of the CF-CNN. Table I
illustrates the confusion matrices for the testing data set,
including the overall accuracy and Kappa coefficient, under the
different classification strategies. The proposed strategy of our
framework achieved the highest classification performance,
with an overall accuracy of 0.943 and a Kappa of 0.933.
For comparison, the SRes-Net, being specialized in processing
the HSR images, reached an overall accuracy of 0.917 and
a Kappa of 0.903, while the PVGG-Net, being specialized
in processing the RTUD data, reached an overall accuracy
of 0.900 and a Kappa of 0.883.

As shown in Table I, several land use categories with typical
features, such as industrial zones with scattered factories,
green land, and vacant land with open space, were easier to
identify using the SRes-Net. For other categories where the
features were not easily distinguished, such as commercial
zones, the higher classification accuracy was obtained using
the PVGG-Net due to the distinguishable human activity fea-
tures reflected in the RTUD data. However, there are also sev-
eral land use categories where the classification performance
is unstable, especially with numerous one-sample or two-
sample misclassifications among a total of 50 testing sam-
ples. Public management services, likely including schools,
hospitals, or research institutes, have a complex and diverse
internal land structure, leading to the easy misclassification
of one or two samples into other categories using either the
SRes-Net or PVGG-Net [13]. The classification performance
of residential districts and vacant land achieved by the PVGG-
Net is relatively poor. The classification results of residential
districts also produced many one-sample misclassifications,

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE I

CONFUSION MATRICES FOR THE TESTING DATA SET VIA DIFFERENT
CLASSIFICATION STRATEGIES

PVGG-Net | Pub Ind Gre Com | Res | Urv | Vac
Pub 43 2 0 2 1 1 1
Ind 2 45 3 0 0 0 0
Gre 0 1 47 0 2 0 0
Com 0 1 0 45 4 0 0
Res 0 1 1 1 44 2 1
Urv 0 0 0 1 0 49 0
Vac 0 1 7 0 0 0 42
Overall accuracy=0.900 Kappa=0.883
SRes-Net Pub Ind Gre Com | Res | Urv | Vac
Pub 38 2 2 2 3 0 3
Ind 0 48 2 0 0 0 0
Gre 0 0 50 0 0 0 0
Com 0 0 0 40 9 0 1
Res 0 1 0 3 46 0 0
Urv 1 0 0 0 0 49 0
Vac 0 0 0 0 0 0 50
Overall accuracy=0.917 Kappa=0.903
CF-CNN Pub Ind Gre Com | Res | Urv | Vac
Pub 43 0 0 3 3 0 1
Ind 0 49 1 0 0 0 0
Gre 0 0 49 1 0 0 0
Com 0 0 0 43 6 0 1
Res 2 0 0 0 47 0 1
Urv 0 0 0 0 1 49 0
Vac 0 0 0 0 0 0 50
Overall accuracy=0.943 Kappa=0.933

Types of land use: Pub = Public management services, Ind = Industrial
zones, Gre = Green land, Com = Commercial zones, Res = Residential
districts, Urv = Urban villages, Vac = Vacant land.

which indicate that the population density among various resi-
dential districts is different [65]. Vacant land is similar to green
land because it has fewer human activities, resulting in the mis-
classification of some testing samples. Conversely, commercial
zones have easily distinguishable human activity features,
leading to a better classification performance, which is hard to
discriminate using the HSR images due to the similar appear-
ance between commercial zones and residential districts [20].

We further presented some examples of the classification
results based on the feature of single-source data versus the
fused features of multisource data in Fig. 12. For regions
with image features, such as A and B, which are hard to
distinguish, the range and trend of their RTUD curves match
those of public management services and commercial zones,
respectively, in Fig. 4. In this case, the PVGG-Net can avoid
the misclassifications produced by the SRes-Net. However,
for regions with distinguishable image features, the SRes-
Net can obtain an accurate classification result merely based
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Fig. 12. Examples of the land use classification results. PVGG-Net denotes the 1-D network applied for classifying the RTUD data. SRes-Net denotes the
simplified residual network applied for classifying the HSR images. CF-CNN denotes the framework proposed in this article. The ground truth of examples.
(a) Public management services. (b) Commercial zones. (c) Industrial zones. (d) Green land. (e) Residential districts. (f) Vacant land. Red font indicates that

the classification result of this method is correct.

on image features. For example, although both the RTUD
curves of C and D have relatively distinct features that are
similar to that of the industrial zone, the vast differences
from the RTUD curves of their actual land use categories
produced misclassifications. Besides, the RTUD curves of
other misclassified regions produced by the PVGG-Net, such
as E and F, are chaotic, reflecting a sparse population that is
likely caused by the quality of the data and the collection time.
In a word, the misclassified examples using single-source data-
based methods are caused by various reasons, but all examples
could be correctly identified after integrating the features by
the CF-CNN. These results demonstrate that the integration of
multisource data can reduce the error rate of the model and
produce a more reliable land use map.

B. Mixed Land Composition

To estimate the proportions of mixed land use in our study
area, we used a rectangular window to scan the entire area and
split it into blocks. The fixed size of the scanning windows
was set to 128 x 128, identical to the sampling window, and
adjacent image blocks overlapped by 64 pixels to avoid the
loss of spatial information [39]. We obtained approximately

55000 image blocks by scanning the study area. The category
of each image block was identified by the CF-CNN. The street-
block data were used to divide the study area into land parcels,
which were the basic processing units of Guangzhou. We,
therefore, counted the proportions of the land use categories
based on the land parcels.

Fig. 13 illustrates the proportions of mixed land use cate-
gories at the street-block level. The distribution of each land
use category is spatially heterogeneous. As the study area is
located in the central urban area of Guangzhou, the proportion
of vacant land is the lowest. The proportion of green land is
also relatively small and mainly distributed in the northern part
of Tianhe district and the southern part of Haizhu district,
where Furnace Forest Park and Haizhu Wetland Park are
located. The places for people to live in always have a high
demand in cities, so residential districts account for the highest
proportion and are evenly distributed in the study area. Close
to the edges of the suburbs, the main components are industrial
zones and green land, as shown in Fig. 13(b) and (c). The city
has not yet expanded into these areas so that the proportion of
residential districts is relatively small. Most street blocks with
a high proportion of public management services are located
in the northern part of Tianhe and Haizhu districts, where
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Fig. 13.  Proportions of urban mixed land use categories in the study
area. (a) Public management services. (b) Industrial zones. (c) Green land.
(d) Commercial zones. (e) Residential districts. (f) Urban villages. (g) Vacant
land.

there are many universities, such as Sun Yat-sen University,
Guangzhou, China, South China University of Technology,
Guangzhou, and Jinan University, Guangzhou. Due to the
rapid development and numerous urban renewal projects in
Guangzhou, many factories have been relocated to the suburbs
to enhance the quality of life in the city center. Consequently,
the street blocks with a large proportion of industrial zones
are now distributed at the edge of the city. The problems
of urban villages are the same as those of factories, with
ongoing demolition and renovation, which are also the reason
why the spatial distribution of urban villages is similar to
that of industrial zones. Conversely, commercial zones are
mainly distributed in the center of the study area, especially
in Tianhe and Yuexiu districts. Tianhe district has the largest
central business district in Guangzhou, while Yuexiu district
has two famous commercial pedestrian streets, attracting a
large number of people every weekend.

C. Measurement of Mixed Land Use Based on the SHDI

The proportion of land use is only a preliminary result,
and it is impossible to intuitively express the mixed degree of
each land parcel. To quantitatively illustrate the urban mixed
land use pattern, we embedded the proportions of various
land use types into the SHDI [11], [49]. Fig. 14 shows the
spatial distribution of the SHDI at the street-block level.
We conducted a Spearman correlation analysis between the
SHDIs and the area of land parcels to assist in analyzing
the distribution pattern of mixed land use. The Spearman
correlation coefficient (r = 0.476, p < 0.01) indicates that
the SHDI has a moderate positive correlation with the area of
land parcels. To be specific, some relatively large land parcels
are more likely to have a high SHDI due to their broad extent.
Conversely, the land parcels with relatively small areas easily
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have a low SHDI. Most of the low-SHDI-valued land parcels
with a small area are densely distributed in the mountains
and parks of the study area, while other parcels are densely
distributed in the city center, thus exhibiting agglomerated
distributions. The results reveal that land parcels with low
SHDI values do not usually represent undeveloped regions.
The newly developed regions through urban renewal projects
might be upscale residential districts or modern commercial
plazas with low SHDIs.

We selected several typical land parcels with high- and
low-SHDI values for further comparison to more intuitively
analyze the mixed land use patterns. As shown in Fig. 15,
we selected land parcels A and B with high-SHDI values.
The value of land parcel A is 1.126, which is higher than
the value of 1.006 for land parcel B. We also selected land
parcels C (0.224), D (0.165), and E (0.000), which have low
SHDI values. Land parcel A is the main campus of Sun Yat-
sen University. Although the highest proportion of land use
is public management services, some areas inside land parcel
A are used for living, dining, and shopping. Land parcel B is
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TABLE 1T
SPEARMAN CORRELATION ANALYSIS FOR THE COMMUNITY DISTANCE AND NEIGHBORHOOD VIBRANCY

Variable Community Distance Shannon Diversity Index
Spearman Correlation 1 -0.103**
Community Distance Sig.(2-tailed) 0.000
N 0 2931
Neighborhood Vibrancy Shannon Diversity Index
Spearman Correlation 1 0.315%**
Neighborhood Vibrancy Sig.(2-tailed) 0.000
N 0 2931

**Correlation is significant at the 0.01 level (2-tailed test)

Kecun in Haizhu district, a popular commercial zone that was
redeveloped in the urban village. The parcel contains a small
proportion of residential districts and urban villages, which is
the main cause of the high SHDI. Unlike land parcels A and B,
the SHDIs of land parcels C, D, and E are less than 0.300. The
low SHDIs means that the parcels are mainly composed of one
type of land use category, and the proportions of other types
of land use category are very small. The main compositions of
land parcels C, D, and E are residential buildings, green land,
and urban villages, respectively. The previously mentioned
comparison of these cases indicates that the SHDI value based
on the type of urban land use within the land parcels is
reasonable.

D. Correlation Analysis

According to previous studies [6], [10], the mixture of urban
land use can place living, working, and dining close together,
thus shortening the community distance and enhancing the
neighborhood vibrancy. To validate the effectiveness of the
mixture obtained by the CF-CNN, we conducted a Spearman
correlation analysis among the SHDI, community distance,
and neighborhood vibrancy. The mobile phone data were
employed to extract the dynamic trajectory of human activity.
A total of 6177063 travel trajectories for one week were
obtained in the study area. In each land parcel, the accumu-
lated population and average traveled distance were calculated
according to the origin and destination point of each trajectory;
then, we regarded these values as the neighborhood vibrancy
and community distance, respectively. The results of the
Spearman correlation analysis are shown in Table II. It can
be seen that the SHDI has a weak negative correlation with
community distance (r = —0.103, p < 0.01) but a moderate
positive correlation with neighborhood vibrancy (r = 0.315,
p < 0.01), which indirectly verifies the effectiveness of the
SHDI according to the empirical phenomenon. Although the
relatively small r-value indicates that mixed land use is not
the only factor affecting these two urban metrics, the bias of
mobile phone data might affect the result of the Spearman
correlation analysis.

VI. CONCLUSION AND DISCUSSION

Mixed land use is favored by urban planners due to its
positive impacts on urban habitability. Therefore, it is nec-

essary to accurately identify the mixed land use areas. With
the availability of emerging data sources, this article first
depicted urban mixed land use at the street-block level by
integrating HSR images and geospatial big data (represented
by the RTUD data). We adopted two CNN architectures, the
SRes-Net and PVGG-Net, to extract the features from the
HSR images and RTUD data, respectively. Finally, these two
features were concatenated to generate the fused CNN feature
in the CF-CNN. Compared with conventional methods using
single-source data, the proposed CF-CNN had the highest
classification performance (overall accuracy = 0.943, Kappa
= 0.933). The Kappa coefficient increased by 0.030 and 0.050,
which proved that the fused feature from multisource data is
more beneficial to land use classification tasks.

To assess the degree of urban mixed land use, we calculated
the SHDI using the proportion of each land use type at
the street-block level. The spatial distribution of the SHDI
revealed the complexity of the current urban structure in
the study area. Some of the undeveloped marginal regions
with a large parcel size were likely to have a high SHDI,
while regions distributed in the city center with emerging
commercial zones or residential districts were likely to have a
low SHDI. In addition, the SHDI was utilized to analyze the
Spearman correlations with community distance and neighbor-
hood vibrancy. The Spearman correlation analysis confirmed
empirical evidence that mixed land use can reduce the commu-
nity distance and promote the neighborhood vibrancy, which
also demonstrated the effectiveness of the mixed land use
obtained by the proposed framework.

Although our framework can characterize the phenomenon
of urban mixed land use, several factors might influence the
performance. First, due to the accessibility of geospatial big
data, this article selected only the RTUD data as a fine-scale
proxy for human activities. Some other types of geospatial
big data that could provide useful information about land use
classification were not employed in our framework. Besides,
the combination methods might also lead to different clas-
sification performance. Second, object-oriented classification
for the HSR images always encounters the problem of poor
segmentation. Previous studies have employed multiresolution
segmentation methods, but the segmentation results were not
ideal [66], [67]. Considering the integrity of a single land
parcel, we applied the street-block data as a partitioning
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benchmark. However, as shown in some cases in Fig. 15,
segmentation errors (such as wide roads) still existed at the
street-block level, which would affect our mapping results.

Therefore, we can add other types of data into our frame-
work to address more complicated situations in the future.
The RTUD data mainly reflect the attributes of human time-
series behaviors. Other types of geospatial big data, such as
points of interest and Weibo check-in data, can also provide
information for classification from other aspects. In addition,
a more efficient and intelligent segmentation method should
be considered to reliably split land parcels. Simultaneously,
a minimum area criterion of the segmentation should also be
applied.
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