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A B S T R A C T

Land use and land cover change (LUCC) simulation models are effective and reproducible tools for analyzing
both the causes and consequences of future landscape dynamics under various scenarios. Current simulation
models primarily focus on the evolution of specific land use types under the influence of human activities, but
they rarely consider background climatic effects. However, these background climate changes significantly affect
the landscape dynamics and should be incorporated into long-term LUCC simulations under various human-
climate-included scenarios. In this paper, we propose a future land use simulation (FLUS) model that explicitly
simulates the long-term spatial trajectories of multiple LUCCs. The top-down system dynamics and bottom-up
cellular automata were interactively coupled during the projection period, which improved the model’s ability to
accurately simulate future land use patterns. A self-adaptive inertia and competition mechanism was developed
within the CA model to process the complex competitions and interactions between the different land use types.
The proposed model was applied to an LUCC simulation in China from 2000 to 2010. The results show promising
grid-to-grid agreement compared to actual land use, and the simulation accuracy is higher than other well-
accepted models, such as CLUE-S and CA models. The model was further applied to the simulation of four
scenarios from 2010 to 2050 that depict different development strategies by considering various socio-economic
and natural climatic factors. The simulation results and findings demonstrate that the proposed model is ef-
fective for future LUCC simulation under variously designed scenarios. FLUS is available for free download at
http://www.geosimulation.cn/FLUS.html.

1. Introduction

The land cover on earth and its anthropogenic exploitation are
crucial links between human activities and the natural environment.
Since the industrial era, land use and land cover change (LUCC) has
been critical in contributing to regional and global climate change by
driving energy recycling and material exchange on the land surface
(Foley et al., 2005). Human-involved LUCCs, such as forest over-
exploitation, agricultural intensification and urbanization, not only
accelerate global warming via increasing greenhouse gas emissions
(Kalnay & Cai, 2003; Pielke et al., 2002) but also pervasively cause ir-
reversible biological diversity losses across the globe (Matson, Parton,
Power, & Swift, 1997; Tilman et al., 2001; Vitousek, Mooney,
Lubchenco, &Melillo, 1997). Rapid urban expansion and socio-

economic development have increased the tension in human-environ-
ment interactions (Vitousek et al., 1997; Yao et al., 2016), as more than
50% of the world’s population lived in urban areas in 2007, a number
that will likely reach approximately 70% by 2050 (Bloom, 2011).

Spatiotemporal LUCC simulations are effective and reproducible
tools for analyzing both the causes and consequences of alternative
future landscape dynamics relative to socio-economic and natural en-
vironmental driving forces (Costanza & Ruth, 1998; Verburg, Schot,
Dijst, & Veldkamp, 2004). The complex structure of linkages and feed-
back is expected to be solved using simulation models to project future
land use trajectories and support future land-use policy decisions
(Heistermann, Müller, & Ronneberger, 2006; Kline, Moses,
Lettman, & Azuma, 2007; Schulp, Nabuurs, & Verburg, 2008). Cellular
automata (CA) are common methods to simulate the LUCC spatial
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evolution by estimating the state of a pixel according to its initial state,
the surrounding neighborhood effects and a set of transition rules. Al-
though very simple, a CA model can generate rich patterns and can
effectively represent nonlinear spatially stochastic LUCC processes
(Batty, Couclelis, & Eichen, 1997). In the last two decades, a growing
body of literature has described the applications of CA models in urban
development studies (Clarke & Gaydos, 1998; Li and Yeh, 2000,2002;
Li, Chen, Liu, Li, & He, 2011; White, Engelen, & Uljee, 1997; Wu, 1999).
By properly defining the transition rules, urban CA models have strong
capabilities for simulating the spatiotemporal complexities of urban
systems (Chen, Li, Wang, & Liu, 2012; Li, Lin, Chen, Liu, & Ai, 2013;
Liu & Hu et al., 2017; Liu, Li, Liu, He, & Ai, 2008; Liu, Li, Shi, Wu, & Liu,
2008; Liu, Li, Shi, Zhang, & Chen, 2010; Liu et al., 2014). Other studies
have focused on simulating deforestation under the influences of nat-
ural hazards or human activities (Gustafson, Shifley, Mladenoff,
Nimerfro, & He, 2000; Kok &Winograd, 2002). However, most of these
models can only simulate the dynamics of one individual land use,
while in many cases, different LUCC processes occur simultaneously
and affect each other. Thus, multiple LUCC simulations are much more
effective for determining realistic future land use patterns. Conducting
multiple LUCC simulations within one CA model is challenging because
of the interaction and competition among different land uses, which
inevitably leads to very complicated definitions of the transition rules.
The complicated interactions and competition among different land use
types are not well explored. Most current studies simply estimate the
probabilities of individual land use types separately and assign the
highest value to the land grid, such as the ANN-CA (Li & Yeh, 2002) and
CLUE-S series models (Verburg et al., 2002; Verburg &Overmars,
2009). Moreover, the role of climate change in long-term land use
patterns is not well addressed in these models.

Climate change (global warming, extreme weather events, etc.) and
ecological degradation (hydrological variation, soil erosion, etc.) have
long-term effects that alter the natural landscape dynamics (Bakker
et al., 2005; Geist & Lambin, 2004; Lambin, Geist, & Lepers, 2003; Li,
Guangzhao, Xiaoping, & Xun, 2017; Okin, Murray, & Schlesinger,
2001). Temperature variability, freshwater availability and soil quality
affect various human-dominated land use decisions, such as the redis-
tribution and transformation of cultivated land, grassland and pas-
tureland (Mendelsohn &Dinar, 1999; Wolf, Bindraban,
Luijten, & Vleeshouwers, 2003). Such interactions and feedback within
the LUCC environmental system will eventually have profound impacts
on human welfare and long-term social sustainability through air pol-
lution, natural resource shortages, food risk, etc. (Hansen, 2010;
Hay &Mimura, 2006). Issues such as land degradation (De Koning,
Verburg, Veldkamp, & Fresco, 1999), biodiversity (Chapin et al., 2000;
Sala et al., 2000) and global climate change (Tangen, 1999) have in-
creasingly demanded quantitative information on regional and global
LUCCs and their future changes, both spatially and temporally. The
exploration of both the LUCC natural environmental and anthropogenic
impacts is vitally important for climate change adaptation and main-
taining a sustainable landscape.

Another challenge of multiple LUCC simulations is that CA models
are bottom-up models that determine the system evolution from a local
perspective. However, macro-scale demands, political planning and
background climate influences on different land use types cannot be
properly represented in the traditional CA models (Ward,
Murray, & Phinn, 2000). Thus, it is necessary to introduce top-down
models to address these planning and development factors, such that
demands for different use types can be determined from the macro-scale
perspective and can be regarded as scenarios that represent future de-
velopment pathways (Sohl, Sayler, Drummond, & Loveland, 2007;
Xiang & Clarke, 2016). Through such coupling, the land use change
quantities can be rationally determined. Subsequently, the CA model
iterates and allocates these land use change quantities according to the
transition rules at the local level. A series of researchers have proposed
models to integrate the top-down quantitative estimation methods,

such as historical trend extrapolation, complex multi-sector models
(Verburg &Overmars, 2009), Forrester models (Berling-Wolff&Wu,
2004), and system dynamics (He et al., 2005; Huang, He, Liu, & Shi,
2014), using the bottom-up CA model to better simulate the LUCC
dynamics. These top-down methods are designed to address the de-
mands, planning, and developments of individual land use types from a
macro-scale perspective to determine the land use change quantities.
The CA model then allocates these land use change quantities through
local interactions and evolutions of different land use types at the grid
cell level. Examples of such integrated CA models include CLUE-S
(Verburg et al., 2002), LTM (Pijanowski, Alexandridis, &Mueller,
2006), the SLEUTH model (Dietzel & Clarke, 2007), and FORE-SCE
(Sohl et al., 2007). However, problems still occur, because these cou-
pled models directly link two sub-models via the land use demands at
the end of the study period, despite the bottom-up and top-down
models being built using different assumptions. The interactions and
feedback loops between the bottom-up and top-down models are ig-
nored, leading to the separation of the macro land use demand pro-
jections and the local change allocations.

Although many of these models have addressed socio-economic and
geographic condition factors, few studies have considered the back-
ground climate conditions. Many previous studies (Bakker et al., 2005;
Mendelsohn & Dinar, 1999; Wolf et al., 2003) have agreed that climate
factors (e.g., temperature increases and precipitation variations) have
significant effects on specific LUCCs, such as forest, farmland, and
pastureland. Without incorporating climate change scenarios, these
models are not applicable for future LUCC simulations under human-
climate-included scenarios and are therefore unable to reliably de-
termine future land use patterns due to the significant effects of climate
change on the LUCC dynamics. In addition, the top-down and bottom-
up models are typically built upon different assumptions. Current si-
mulation models typically loosely integrate two sub-models via the land
use demands at the end of the study period, but they seldom consider
their interactions and feedback, leading to the separation of the macro
land use demand projection and the local change allocation. To sum-
marize, although great progress has been achieved, three limitations
exist in the current multiple LUCC simulation models: 1) Although the
socio-economic factors and geographic conditions are well addressed,
few studies have considered the background climate conditions. Future
climate changes will have significant impacts on the long-term land use
dynamics. 2) Most of the multiple LUCC models train and estimate the
conversion probabilities of each land use type independently, resulting
in a separation between the different land use types. The competition
and interactions are not well explored in these models. Finally, 3) the
interactions and feedback between the top-down and bottom-up models
are not typically coupled, which results in the separation between the
macro land use demand projection and the local change allocation.

In this paper, we present an approach that interactively integrates
top-down system dynamics (SD) with a bottom-up CA model for a
multiple LUCC dynamic simulation. The proposed integrated model
differs from existing models in its ability to explicitly simulate the
spatial trajectories of multiple LUCCs under alternative scenarios by
coupling both human-related and natural environmental effects using
an elaborate design of the interactions and competition among different
land use types and using an interactive coupling mechanism between
the SD and CA models. In the proposed model, we incorporated natural
factors, including future global warming and precipitation variations
and socio-economic developments into both the SD and CA models. A
self-adaptive inertia and competition mechanism is designed to address
the complex local land use interactions and estimate the transition
probabilities of different land use types simultaneously. An “interactive
coupling” mechanism is introduced into the model allocation, which
integrates the bottom-up and top-down models interactively via the
mutual feedbacks between land use quantities and local allocations
along the entire simulated time series. This new coupling mechanism
enables the two sub-models to evolve collaboratively. The proposed
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model is illustrated with multiple LUCC simulation scenarios in the
China region from 2010 to 2050 at a spatial resolution of 1 × 1 km2.
Four scenarios were designed based on the impacts of both the natural
environment and human activities. The simulation results are compared
and analyzed to assess the human and natural effects on future LUCCs.

2. Methodology

In this paper, we present a future land use simulation (FLUS) model
for multiple LUCC scenarios for future land use by coupling human and
natural effects. The proposed model is an integration of a top-down
system dynamic (SD) model and bottom-up cellular automata (CA). The
SD model is used to project the land use scenario demands under var-
ious socio-economic and natural environmental driving factors at the
national/regional scale. A self-adaptive inertia and competition me-
chanism is developed within the CA model to process the complex
competitions and interactions among the different land use types. The
general structure of the FLUS model is illustrated in Fig. 1.

2.1. Land use demand projection using system dynamics (SD)

The SD model is an effective approach for modeling the nonlinear
behavior of complex systems over time by using stocks, flows, internal
feedback loops and time delays (Coyle, 1997). It can be used to un-
derstand and predict the evolution of a complex system through the
feedback and interactions among different elements. Currently, the SD
model is widely used in policy making and analysis throughout the
public and private sectors (Costanza & Ruth, 1998; Haghani,
Lee, & Byun, 2003).

In this study, we developed an SD model to project the multiple land
use demands under different scenarios by considering both human ac-
tivities and natural ecological effects. The interactions and feedback of

the developed SD model are presented in Fig. 2. The developed SD
model consists of four sectors: population, economy, climate and land
use. The population sector is essential, since it will cause consequential
variations in the other sectors. The economy sector has strong influ-
ences on population and land use, as GDP (gross domestic product)
affects the change in the fixed-asset investments, thereby driving the
economic investment in various land use types. As mentioned above,
the background climate conditions have a long-term effect on altering
the natural landscape dynamics; thus, the climate sector (annual pre-
cipitation and temperature) is also included in the SD model. Variations
in temperature are assumed to have various influences on the growth
and regeneration capacity of cultivated land, forest land and grassland.
Similarly, appropriate increases in precipitation are sufficient to meet
the water requirements of vegetation, leading to changes in cultivated
land, forest land and grassland. In total, six land use types are con-
sidered in the land use sector: urban land, cultivated land, grassland,
forest, water area and unused land. The changes in each land use type
are constrained by the integrated influences of socio-economic and
climate conditions as well as by the interactions among the various land
use types. For example, urban land is estimated by multiplying the
urban population by the GDP value, which directly affects the changes
in cultivated land and water area. Moreover, the forest and grassland
areas are estimated by the socio-economic factors and climate condi-
tions, such as precipitation and temperature. This SD component pro-
vides a convenient way to capture the major impacts of the socio-eco-
nomic and climate changes on the land use demands in China.

2.2. Land use change simulation using cellular automata (CA)

The multiple CA allocation model is developed to simulate the fu-
ture spatial pattern under the given land use demands determined by
the SD model. The CA simulation is implemented in two steps: 1) an

Fig. 1. The framework of the proposed FLUS model.
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artificial neural network is used to train and estimate the probability-of-
occurrence of each land use type on a specific grid cell, and 2) an
elaborate self-adaptive inertia and competition mechanism is designed
to address the competition and interactions among the different land
use types. Through these two steps, the combined probabilities of all the
land use types at each specific grid cell are estimated, and the dominant
land use type is allocated to this grid cell during the CA iteration. In the
allocation process, a specific land grid either retains the current land
use type or transforms into another type depending on their combined
probabilities and the roulette selection (as described in detail below). A
schematic framework of the CA allocation model is presented in Fig. 3.

2.2.1. Probability-of-occurrence estimation using artificial neural networks
Artificial neural networks (ANNs) are a family of machine learning

models inspired by biological neural networks (e.g., the human brain)
and are typically used to estimate or approximate non-linear functions
that are dependent on many inputs (independent variables). The ad-
vantage of ANNs is that they are capable of learning and fitting complex
relationships between input data and training targets through a number
of learning-recall iterations (Li & Yeh, 2002). ANNs have been suc-
cessfully applied to the analysis and modeling of various non-linear
geographical problems (Openshaw, 1998). It is well accepted that ANNs
are able to achieve promising performance when modeling a large
number of inputs and outputs (Wang, 1994).

In general, an ANN with multiple input and output neurons consists
of three layer types: an input layer, a hidden layer and an output layer
(Fig. 4). In the input layer, each neuron corresponds to an input vari-
able, e.g., independent spatial variables, socio-economic variables and
natural climate variables in the CA model. It can be mathematically
expressed as

= …x x xX [ , , , ]n
T

1 2 (1)

where xiis the i th neuron in the input layer. In the hidden layer, the
signal received by neuron j from all the input neurons on grid cell p at
time t is estimated according to the following equation:

∑= ×net p t w x p t( , ) ( , )j
i

i j i,
(2)

where net p t( , )i is the signal received by neuron j in the hidden layer;
x p t( , )i is the ith variable associated with the input neuron i on grid cell
p at training time t; and wi,j is an adaptive weight between the input
layer and the hidden layer, which is calibrated during the training
process. The connection between the hidden layer and the output layer
is determined by an activation function. The sigmoid activation func-
tion is effective for building the connection between the hidden layer
and the output layer, which is estimated as follows:

=
+ −net

e
sigmoid( (p, t)) 1

1j net p t( , )j (3)

Each neuron in the output layer corresponds to a specific land use
type. The value of the lth neuron in the output layer will generate a
value that represents the probability-of-occurrence for the lth land use
type at the grid cell. A higher value indicates that the specific grid cell
has a higher probability-of-occurrence for the target land use type. The
probability-of-occurrence of land use type k on grid cell p at training
time t is denoted as P p k t( , , ) and is estimated according to the fol-
lowing equation:

∑ ∑= × = ×
+ −w sigmoid net p t w

e
p(p,k,t) ( ( , )) 1

1j j k j
j

j k net p t, , ( , )j

(4)

where wj,k is an adaptive weight between the hidden layer and the
output layer, and similar to wi,j, it is calibrated during the training
process. After both wi,j and wj,k are trained and calibrated using the
training dataset, the ANN model is built and can be used to estimate the
probability-of-occurrence for each land use type in a specific grid cell.

2.2.2. Self-adaptive inertia and competition mechanism
The ANN model was developed to establish the relationship be-

tween the probability-of-occurrence surface for a specific land use type

Fig. 2. The interactions and competition of different land use types driven by human and natural factors in the system dynamics.
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and the given spatial factors. Similar to previous large-scale simulation
models, such as CLUE-S (Verburg, Schulp, Witte, & Veldkamp, 2006),
LUS (Letourneau, Verburg, & Stehfest, 2012), and CLUMondo (Van
Asselen & Verburg, 2013), this relationship is assumed to remain rela-
tively unchanged over the study period due to the essential nature of
the land use. Whether a land grid will be developed into a specific land
use type depends not only on the probability-of-occurrence but also on
other variable components accounting for different development sta-
tuses over the prediction period. Thus, in the proposed model, we in-
corporate the probability-of-occurrence with the conversion cost,
neighborhood condition and competition among the different land use
types to estimate the combined probability for each land grid. More-
over, the interactive coupling of the top-down SD demand and the
bottom-up CA model enhances the model’s capability for long-term si-
mulation.

2.2.2.1. Neighborhood effects. The neighborhood development density
effect considered in this study is similar to that of traditional CA
models. At a specific grid cell p, the neighborhood development density
for land use type k is defined as

∑
=

=

× −
××

−con c k

N N
wΩ

( )

1p k
t N N p

t

k,

1

(5)

In this equation, ∑ =
×

−con c k( )
N N

p
t 1 represents the total number of

grid cells occupied by the land use type k at the last iteration time t − 1
within the N × N window. wk is the variable weight among the dif-
ferent land use types because there are different neighborhood effects
for different land use types. The neighborhood weight value for each
land use type is determined based on expert knowledge and a series of
model tests. The final neighborhood weight for each land use type is
illustrated in Table 3.

Fig. 3. The schematic framework of the Cellular Automata (CA) local allocation.
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2.2.2.2. Inertia coefficient. The most important factor in the proposed
model involves the competition and interaction of different land use
types during the multiple CA evolution iterations. A self-adaptive
inertia should be used to represent the inheritance of previous land
use types. A self-adaptive inertia coefficient for each land use type is
thus defined to auto-adjust the inheritance of the current land uses on
each grid cell according to the differences between the macro demand
and the allocated land use amount. The core idea is that if the
developing trend of a specific land use type contradicts the macro
demand, the inertia coefficient would dynamically increase the
inheritance of this land use type to rectify the land use trajectory in
the next iteration. For example, if future planning requires more
cultivated land, whereas the allocation of the cultivated land
decreases in the last iteration, the inertia coefficient will increase to
preserve additional cultivated land and to promote the conversion of
other land use types to cultivated land. The inertia coefficient is defined
as:

=

⎧

⎨

⎪⎪

⎩
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2
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1

2 (6)

where Inertiak
t denotes the inertia coefficient for land use type k at

iteration time t. −Dk
t 1 denotes the difference between the macro demand

and the allocated amount of land use type k until iteration time t − 1.
Note that the inertia coefficient is defined with respect to the current
land use type occupying the grid cell. Thus, if the considered land use
type k is not the current land use, then the inertia coefficient of land use

type k will be set to 1, and it will not alter the combined probability of
land use type k for this grid cell. According to Eq. (6), the inertia
coefficient is defined based on three different situations: 1) If the
developing trend of the specific land use type k meets the macro
demand, i.e., ≤− −D Dk

t
k
t2 1 , then the inertia coefficient at iteration

time t will remain unchanged. 2) If the macro demand for the specific
land use type k is less than the current allocation amount, and the
developing trend of land use type k contradicts the macro demand, i.e. ,
then the inertia coefficient at iteration time t will decrease slightly by
multiplying the previous coefficient by − −D D/k

t
k
t2 1. 3) If the macro

demand for the specific land use type k is greater than the current
allocation amount and the developing trend of land use type k
contradicts the macro demand, i.e., < <− −D D0 k

t
k
t2 1, then the inertia

coefficient at iteration time t will increase slightly by multiplying the
previous coefficient by − −D D/k

t
k
t1 2. Through the dynamic tuning of the

inertia coefficients for all land use types in the CA iteration, the
allocations of different land use types compete with each other,
resulting in a scenario where all the land use allocations match the
macro land use demands.

2.2.2.3. Conversion cost. The conversion cost, which indicates the
conversion difficulty from the current land use type to the target
type, is another factor shaping the land use dynamics
(Aerts & Heuvelink, 2002; Huang, Liu, Li, Liang, & He, 2013). Similar
parameters analogous to the conversion cost have been used in some
large-scale LUCC simulation models, such as the CLUE-S (Verburg et al.,
2002), FORE_SCE (Sohl & Sayler, 2008), and CLUMondo (Van
Asselen & Verburg, 2013) models. These models predefine a group of
static experience-based parameters for a specific region that denotes the

Fig. 4. Basic structure of an artificial neural network
with multiple inputs and outputs.
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conversion difficulty.
The conversion cost defined in this paper is a brief summary of the

difficulty for a specific land grid to change from one land use type to
another. It is estimated based on an analysis of the historical land use
data in the study area and regional expert opinions. It reflects the in-
trinsic attributes of land uses without considering the changeable in-
fluences, such as technological progress and human activities. Thus, the
conversion cost remains unchanged in the proposed model. Other
changeable factors are reflected by the neighborhood effects, the inertia
coefficient and the interactive integration with the system dynamic
model, which will continue to vary over the study period. The con-
version costs are different for individual land use types. For example,

the cost of converting urban land into grassland is relatively high, while
the cost of converting agricultural land to urban construction land is
relatively low. For each land use pair c and k, the cost of the land use
change from c to k is denoted as scc→k. In this study, the conversion cost
of each land use pair is determined based on local expert experience
and urban planners (Table 1). The value of the conversion cost scc→k

varies between the range of [0,1]. Larger values indicate a greater
conversion difficulty, and a value of 1 means that the conversion is
nearly impossible. We have also developed a sensitivity analysis for
testing the model sensitivity to conversion cost in Section 4.

2.2.2.4. Roulette selection. By considering the probability-of-

Table 1
Conversion cost of land use pairs.

Land use types Cultivated land Forest land Grass land Water area Urban land Unused land

Cultivated land 0 0.9 0.1 0.8 0.1 0.4
Forest land 0.7 0 0.3 0.99 0.99 0.8
Grass land 0.5 0.8 0 0.4 0.3 0.1
Water area 0.9 0.9 0.9 0 0.99 0.5
Urban land 1 1 1 1 0 1
Unused land 0.9 0.99 0.5 0.8 0.3 0

Fig. 5. Schematic diagram of the roulette selection mechanism.
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occurrence, neighborhood effect, inertia coefficient and conversion
cost, the combined probability of a cell being occupied by a specific
land use type is estimated using the following equation:

= × × × − →TP P Inertia scΩ (1 )p k
t

p k p k
t

k
t

c k, , , (7)

where TPp k
t
, denotes the combined probability of grid cell p to covert

from the original land use type to the target type k at iteration time t;
Pp,k denotes the probability-of-occurrence of land use type k on grid cell
p; Ωp k

t
, denotes the neighborhood effect of land use type k on grid cell p

at iteration time t; inertiak
t denotes the inertia coefficient of land use

type k at iteration time t; and scc→k denotes the conversion cost from the
original land use type c to the target type k.

After estimating the combined probability for each iteration time,
the CA simulation will determine whether a grid cell is converted or
not. If it is converted, the simulation will determine which land use type
will occupy the grid cell in the next iteration. In most previous models,
such as CLUE-S, the land use type of a specific grid cell is simply allo-
cated to the dominant cell with the highest conversion probability
(Verburg et al., 2002). Other studies used pre-defined thresholds to
control the conversion rate by comparing the highest conversion
probability and the threshold (Li & Yeh, 2002). These methods only
consider the dominant land use type and disregard the competition
with other land use types, thereby eliminating allocation opportunities
for non-dominant land use types.

Undoubtedly, the dominant land use type with the highest com-
bined probability is the priority for grid cell allocation, but the other
land use types with relatively lower combined probabilities still have a
chance to be allocated, even though the chances are small. To achieve
this, we propose the use of a roulette selection mechanism to determine
which land use type will occupy the grid cell. The probability of a land
use being allocated is proportional to its combined probability. A
schematic diagram of the roulette selection mechanism is shown in
Fig. 5. For a specific grid cell p at iteration time t, the combined
probability of each land use type is estimated according to Eq. (7), after
which a roulette wheel is constructed according to the combined
probabilities of all the land use types. Each sector of the roulette wheel
is represented by a land use type. The area of a sector is proportional to
its combined probability. Then, a uniformly distributed random number
ranging from 0 to 1 is generated, and based on the associated sector of
the random number, the corresponding land use type is allocated to the
grid cell in the current iteration. Through this roulette selection me-
chanism, a land use type with a higher combined probability is more

likely to be selected as the occupying land use, and those with relatively
lower combined probabilities still have a chance to be allocated. In
addition, the stochastic characteristics of this mechanism enable the
model to reflect the uncertainty of real-world LUCC dynamics, ex-
tending its applicability to the leapfrog-grown land use simulations.

2.3. Integration of the SD model with the multiple CA model

In the proposed FLUS model, the top-down SD demand projection
model and the bottom-up CA local allocation model are not loosely
coupled via the final land use demands as with many integrated models.
Instead, analogous to Syphard’s study (Syphard, Clarke, & Franklin,
2007), they are interactively (tightly) coupled through individual land
use quantities during the study time series. To strengthen the mutual
feedback between the SD and CA sub-models, the study period was
divided into several intervals during which these two sub-models
evolved collaboratively. The projected land use demand derived from
the SD model in the previous time node was used as an input for the CA
model to simulate the land use pattern in the current time node, and
this simulation, together with other driving factors, was used to project
the land use demand to the next time node using the SD model. This
input-output mutual feedback continues and finally generates the land
use pattern at the end of the simulation period.

A schematic diagram of the coupling mechanism is illustrated in
Fig. 6. We use the period of 2010–2050 as an example to explain the
coupling mechanism. The 40-year period was divided into four inter-
vals: 2010–-2020, 2020–2030, 2030–2040, and 2040–2050. At the
beginning and end of each time interval, the SD and CA models would
exchange input/output information. The demand of all the land use
types in 2020 is projected through the configured SD model using the
actual land use pattern in 2010 and the influence of both human and
natural factors during this time interval. Then, the trained multiple CA
model simulates the local competition and interactions iteratively and
generates the land use pattern in 2020, which meets the projected de-
mand derived from the SD model. Subsequently, a newly configured SD
model adjusted by the simulated land use pattern in 2020 is used as a
feedback to project the demand for 2030. Then, the CA model se-
quentially simulates the land use pattern from 2020 to 2030. The mu-
tual feedback between the SD model and CA model continues and, fi-
nally, collaboratively generates the land use pattern in 2050 for
different scenarios. Based on this interactive coupling approach, we
developed the GeoSOS-FLUS software as an extension to our previous

Fig. 6. Interactive coupling mechanism of the SD model and multiple CA model.
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GeoSOS software (Li et al., 2011) to facilitate the multiple land use
change simulations under human-natural-included scenarios (available
for free download at http://www.geosimulation.cn/flus.html).

3. Land use simulations for mainland China during 2000–2010

The applicability of the proposed FLUS model was first tested by
LUCC simulations of mainland China during 2000–2010. China is the
second largest country in the world, covering an area of 9.6 million
square kilometers with various landscape patterns. In the past two
decades, China has undergone significant urban expansion due to its
rapid economic development and population increases, and significant
urbanization processes are expected to continue in the coming decades
(Chen, Liu, & Tao, 2013). It is very important for decision-makers to
predict future land use changes under different planning scenarios and
to evaluate the influences of both human activities and climate change
on the LUCC dynamics.

3.1. Data preparation and model configuration

Considering the significant differences regarding the climate and
ecosystem characteristics across the vast region of mainland China, we
divided the study area into four major ecological regions (Fu, Liu, Chen,
Ma, & Li, 2001) (Fig. 7): the northeast humid and semi-humid (NHSH)
region, the northern arid and semi-arid (NASA) region, the southern
humid (SH) region, and the Tibetan Plateau (TP) region. The spatial
dataset used to build and train the proposed model is listed in Table 2,

including historical and current land use patterns, terrain conditions
(elevation and slope), socio-economic and positional data (population,
GDP, city site and road network), climatic and ecological factors (soil
quality, temperature and precipitation) and future climate variations.
All of the spatial datasets were resampled to the same resolution of
1 × 1 km2.

The application of the FLUS model in China includes six land use
types: cultivated land, forest land, grassland, water area, urban land
and unused (barren) land (including sandy land, Gobi, salina,
swampland, bare soil, bare rock, alpine desert and tundra). A total
of 15 spatial driving factors that were derived from the original
datasets listed in Table 2 and normalized to the range of [0,1] were
selected to establish the ANN model for the probability-of-occur-
rence estimation for each land use type. The ANN model is designed
to have 15 neurons in the input layer (corresponding to 15 spatial
driving factors) and 6 neurons in the output layer (corresponding to
6 land use types). The log-sigmoid function is selected as the model
transfer function to ensure the estimated probability values fall
within [0,1]. The mean square error (MSE) is used as the objective
function in the back-propagation (BP) training process. The training
process stops when the MSE is less than 0.001. In the FLUS model,
we used the 5 × 5 extended Moore neighborhood to represent the
neighborhood space. The neighborhood weights for individual land
use types in different ecological regions are illustrated in Table 3.
The initial inertia coefficients for the first iteration are set to 1 for
all land use types and will subsequently evolve according to Eq. (6)
during the CA iteration.

Fig. 7. Study area and the four divided ecological regions.
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3.2. Model implementation and validations

The applicability of the proposed model was tested by simulating
future LUCCs in China. A total of 500 thousand samples were randomly
selected across the Chinese territory; 70% of the samples (training set)
were used to train the model, and the remaining 30% (validation set)
were used to quantitatively assess its performance. The demands of the
six land use types in 2010 were projected using the SD model (http://
vensim.com/vensim-software/) based on the land use pattern in 2000
as well as the socio-economic factors and environmental tendencies
from 2000 to 2010. The spatial evolution of multiple land uses from
2000 to 2010 was subsequently simulated to meet the given land use
demands derived from the SD model. The FLUS model performance is
assessed based on three aspects: the fit of the ANN model to the prob-
ability-of-occurrence, the agreement between the simulation result and
the actual land use pattern, and a comparison with the current simu-
lation models.

3.2.1. Validation of ANN performance
The Receiver Operating Characteristic (ROC) curve and the Area

Under ROC Curve (AUC) values (Hanley &McNeil, 1982) were used to
quantify the ANN model performance in terms of fitting the individual
land use probability-of-occurrence. The ROC is an effective tool for il-
lustrating the performance of a binary classifier system, due to its
variable discrimination threshold. The ROC curve is created by plotting
the true positive rate (TPR, known as the sensitivity in machine learning)
against the false positive rate (FPR, estimated with 1 − specificity) at
various threshold selections. A larger area under the ROC curve (AUC

value) corresponds to a better model fitting performance. Generally, a
completely random model yields an AUC value of 0.5, and a perfectly
fitting result yields an AUC value of 1.0. Fig. 8 shows the ROC curves of
six land use types in red and the random guess curves in green. The AUC
values of each land use type were estimated according to the ROC
curves. We found that the AUC values of cultivated land, grassland and
water area were larger than 0.8, and the AUC values of the forest land,
urban land and unused land were greater than 0.9. Such promising AUC
values indicate that the probability-of-occurrence fit for the individual
land uses can be well explained by the selected driving factors.

3.2.2. Comparison with other studies
The spatial land use simulation in 2010 and the actual land use

pattern of 2010 are shown in Fig. 9, with three partial enlargements to
display more details of the simulated results. The figure shows that the
simulated pattern is well correlated with the actual pattern at the na-
tional scale. The enlarged views of three select regions also show high
spatial consistencies for the six land use types. To quantitatively assess
the simulated result, samples in the test set were used to build the grid-
by-grid confusion matrix of the simulated result versus the actual land
use pattern (Table 4), from which the overall accuracy and the Cohen’s
Kappa coefficient for all land use types were calculated. In addition, the
agreement of the changes was validated using the figure of merit (Fom),
which is superior to the Kappa coefficient in assessing the accuracy of
simulated changes (Pontius &Millones, 2011; Pontius et al., 2008). This
index can be expressed as the following equation:

Table 2
List of data used in this study.

Category Data Year Resolution Data resource

Land use Land use data 2000–2010 30m CAS (http://www.resdc.cn)
Human influence Population 2010 0.5′ LandScan 2010 Global Population Project

GDP 2010 1 km CAS (http://www.resdc.cn)
City site 2014 1 km World Urbanization Prospects: The 2014 Revision, CD-ROM Edition.
Road network 2010 1 km NASA, Socioeconomic Data and Applications Center, Global Roads Open Access Data Set (gROADS),

v1
Terrain DEM 2000 0.5′ WorldClim version 1.4 (http://www.worldclim.org/)

Slope 2000 0.5′ Calculated from DEM
Soil Nutrient availability 2008 5′ Har monized World Soil Database v 1.2 (http://webarchive.iiasa.ac.at/Research/LUC/External-

World-soil-database/HTML/SoilQuality.html?sb=10)Oxygen availability to
roots
Excess salts.
Workability

Climate Annual Mean Temperature 2000 0.5′ WorldClim version 1.4 (http://www.worldclim.org/)
Temperature Seasonality
Temperature Annual
Range
Annual Precipitation
Precipitation Seasonality

Future Climate Annual Mean Temperature 2010–2050 0.5° World Data Climate Center (http://cera-www.dkrz.de/WDCC/)
Annual Precipitation

Subarea Ecological Zones 2001 Vector Fu et al. (2001)

Table 3
The neighborhood weights for individual land use type in different ecological regions.

Ecological regions Cultivated land Forest land Grassland Water area Urban land Unused land

The NASA region 0.5 0.1 0.2 0.1 1 0.3
The NSHS region 1 0.03 0.01 0.2 1 0.1
The SH region 0.2 0.01 0.3 0.4 1 0.5
The TP region 1 0.1 0.5 0.1 1 0.2

Note:.
NASA: the Northern Arid and Semi-Arid region.
NHSH: the Northeast Humid and Semi-Humid region.
SH: the Southern Humid region.
TP: the Tibetan Plateau region.
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where A is an area of error due to observed change predicted as per-
sistence, B is an area of accuracy due to observed change predicted as
change, C is an area of error due to observed change predicted as
changing to an incorrect category, and D is an area of error due to
observed persistence predicted as change.

For the accuracy assessment results, all three accuracy indexes are
intermediate (the overall accuracy is 0.75, the Kappa coefficient is 0.67
and the Fom is 19.62%). Although a Fom value of 19.62% is not highly
accurate, we believe it is acceptable for the Chinese region from 2000 to
2010 for the following reasons: 1) The Fom value of 19.62% has a similar
range compared to the other simulation study results. For example, the
Fom values range from 12% to 18% for the urban land-use dynamic
modeling in the study by Chen, Li, Liu, and Ai (2014). Pontius et al.
(2008) also reported a Fom range from 1% to 59% (most of the values
are lower than 30%). 2) Pontius et al. (2008) reported a positive re-
lationship between the Fom and observed net change. Due to this re-
lationship, the Fom value of a long-period simulation result is most likely
higher than one with a short period. (Estoque &Murayama, 2012a). In
this article, our simulation period is relatively short (2000–2010), with a
17.38% observed net change, which is shorter compared to studies that
have a relatively high Fom (Chen, Li, Liu, Ai, & Li, 2016;
Estoque &Murayama, 2012b). Considering that our study area is a large
region with complex climatic conditions and significant regional differ-
ences, the simulation accuracy is quite acceptable for the multiple land
use simulations. The accuracy assessment indicates that the FLUS model
is capable of tracing the spatial dynamics trajectories of multiple LUCCs
in China with a relatively favorable accuracy.

To demonstrate the superiority of the proposed method over the
existing multiple LUCC simulation models, we compared the perfor-
mance of the proposed method to that of three well-accepted models:
the Logistic-CA model (Li et al., 2013; Wu, 2002), the traditional ANN-
CA model (Li & Yeh, 2002), and the CLUE-S model (Verburg et al.,
2002). The Logistic-CA model predicts future land-use based solely on
the neighboring land-uses and the same driving factors that are con-
sidered in the paper. The traditional ANN-CA model is typically applied
to the simulation of multiple LUCCs via the integration of neural net-
works with cellular automata, but it does not consider the interaction
and competition of different land use types. Moreover, the traditional
CA model requires two sets of land use pattern data for fitting the
transition probability from one land use type to another for the given
driving factors, which inevitably introduces error propagation from the
multiple land use classifications. Other simulation models use only one
land use set to fit the probability-of-occurrence for specific land use
types, such as the CLUE-S, DynaCLUE, CLUMondo and FORE-SCE
models. The CLUE-S model selected in the comparison is a well-ac-
cepted multiple LUCC simulation model that uses empirically quanti-
fied relationships between land use and its driving factors in combi-
nation with dynamic modeling. However, the CLUE-S model estimates
the probability-of-occurrence for each land use type separately, so it
does not sufficiently address the competition among the different land
use types.

In the comparative study, we applied the proposed FLUS model, the
Logistic-CA model, the traditional ANN-CA model and the CLUE-S
model to the Pearl River Delta (PRD) region of China to simulate the
land use pattern from 2000 to 2010 at a spatial resolution of
250 × 250 m2. For the FLUS method, we divided the study period into

Fig. 8. ROC curves and AUC values of individual land use types fitted by the ANN.
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two intervals, 2000–2005 and 2005–2010, during which the interactive
coupling mechanism could be applied. An additional experiment in
which the SD model was directly coupled to the CA model (2000–2010)
was performed and compared to the proposed method to show the ef-
fectiveness of the interactive coupling mechanism.

The actual 2010 land use patterns and the simulation results of the
five different methods are shown in Fig. 10. Even though all four
models are capable of simulating multiple land use dynamics, the

simulated patterns are slightly different from each other. Using urban
land as an example, the ANN-CA model generates a relatively dispersed
pattern compared to the actual observations, whereas the CLUE-S
model tends to yield a relatively compact pattern. The pattern gener-
ated by the Logistic-CA model is more compact than that of the ANN-CA
model but is more dispersed than the CLUE-S model pattern and con-
tains additional urban enclaves. Both the direct coupling and inter-
active coupling FLUS models, however, were capable of simulating

Fig. 9. The simulated land use pattern and the actual land use pattern in 2010.

Table 4
Confusion matrix of the predicted land use pattern versus the actual pattern in 2010.

Land use types Actual land use in 2010

Cultivated land Forest land Grasslands Water area Urban land Unused land total

Cultivated land 101,521 15,891 8033 2656 7207 1060 136,368
Forest land 16,592 131,553 12,349 949 488 1472 163,403
Grasslands 8723 12421 65,814 737 402 7583 95,680
Water area 1670 579 903 7878 318 1542 12,890
Urban land 5698 1443 615 460 8826 84 17,126
Unused land 1765 993 7930 647 163 52,977 64,475
total 135,969 162,880 95,644 13,327 17,404 64,718 489,942

Kappa Coefficient = 0.67, Overall Accuracy = 0.75.
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more-realistic land use patterns that are neither too dispersed nor too
compact. This favorable peculiarity is likely contributed by the pro-
posed self-adaptive inertia and competition mechanism that was

designed to address the complex local land use interactions and com-
petitions. To quantitatively assess the overall performances of the four
models, a total of 5000 samples were randomly selected across the PRD

Fig. 10. Comparison of simulated land use pattern in the PRD region of China by using the Logistic-CA model, ANN-CA model, the CLUE-S model and the FLUS model (loose-coupling and
tight-coupling).
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region, from which the overall accuracy and the Cohen’s Kappa coef-
ficient were estimated. The Kappa coefficient only evaluates the overall
consistency of the simulation results compared to the actual land use
pattern and is unable to accurately incorporate information from recent
changes. Therefore, we also used the Fom method to measure the ac-
curacy of the land use changes in the comparison study. With the Fom
statistics, the previously established land-uses (unchanged cell in 2000
land use) can be completely excluded from the validation, and the
comparison between these models is entirely based on the recent
change (land use change between 2000 and 2010).

The overall accuracy of the proposed method (∼0.8470) is sig-
nificantly higher than that of the CLUE-S model (∼0.8092), the ANN-
CA model (∼0.7866), and the Logistic-CA model (∼0.7680). Similarly,
the Kappa coefficient of the proposed method (∼0.7963) is better than
that of the CLUE-S model (∼0.7682), the ANN-CA model (∼0.7332),
and the Logistic-CA model (∼0.7100). Moreover, the ‘Figure of merit’
(Fom) indicator was calculated to evaluate the land use change accu-
racy. For the FLUS model results, the Fom value is 12.46%, which is
higher than the values of the other models (ranging from 9.09% to
10.55%).

3.2.3. Examining the integration of SD and CA
A comparison between the simulation results of FLUS (Tight-cou-

pling) and FLUS (Loose-coupling) indicates that the former yielded a
slightly better overall accuracy (0.8470 versus 0.8211), Kappa coeffi-
cient (0.7963 versus 0.7863) and Fom statistics (12.46% versus
11.53%) compared to the loose-coupling FLUS model. These

comparisons showed that the proposed FLUS model performs better
than the existing models for multiple land use dynamic simulations, and
the integration between SD and CA yields a better simulation result
with higher simulation accuracy. Although the improvement is not very
significant, it does illustrate the effectiveness of the integration me-
chanism.

3.3. Model sensitivity to conversion cost

The conversion cost in this article is similar to the transition matrix
used by many other models (Schaldach et al., 2011; Verburg et al.,
2002); however, it acts as an extension and is more detailed than the
conventional transition matrix. Here, we examine the model sensitivity
to the conversion cost in the Pearl River Delta (PRD) region of China.
We compare the model performance of three simulation results that
separately apply 1) a conversion cost that allows all conversions, 2) a
rigid conversion cost (see Table 5) and 3) a flexible conversion cost to
the FLUS model simulation (see Table 1).

For a conversion cost that allows all conversions, all values are as-
sumed to be 0, which indicates that all land use pair conversions are
possible and at zero cost. The rigid conversion cost shown in Table 5
has been widely used by many other studies (Schaldach et al., 2011;
Verburg &Overmars, 2009), but it only defines whether a conversion
between one land use type and another is possible. A value of 1 denotes
that a conversion is not allowed, and a value of 0 denotes that a con-
version is possible in a rigid conversion cost matrix. The flexible con-
version cost used in this article is defined based on the rigid conversion

Table 5
Rigid conversion cost of land use pairs for sensitivity analysis.

Land use types Cultivated land Forest land Grass land Water area Urban land Unused land

Cultivated land 0 0 0 0 0 0
Forest land 0 0 0 1 1 0
Grass land 0 0 0 0 0 0
Water area 0 0 0 0 1 0
Urban land 1 1 1 1 0 1
Unused land 0 1 0 0 0 0

Fig. 11. Sensitivity analysis: region a, b are example areas to zoom in on. (a1), (b1): Land use map generated by allowing all conversions; (a2), (b2): Land use map generated by using
rigid conversion cost; (a3), (b3): Land use map generated by using flexible conversion cost; and (a4), (b4): Actual land use pattern in 2010.
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cost, which has been described in detail in Section 2.
When allowing all land use pair conversions, the results of the Fom

value, the overall accuracy and the Kappa coefficient were 10.57%,
0.7976, and 0.7470, respectively. All of the accuracy indexes are higher
than the results projected by the ANN-CA model (Fom = 9.14%,
Overall accuracy = 0.7866, and Kappa coefficient = 0.7332) and the
Logistic-CA model (Fom = 9.09%, Overall accuracy = 0.7680, and
Kappa coefficient = 0.7100) but are slightly lower than the CLUE-S
model for the overall accuracy and Kappa coefficient (Fom = 10.55%,
Overall accuracy = 0.8066, and Kappa coefficient = 0.7582). Under
such circumstances, the isolated cultivated patches surrounded by
forest and the forest parcels circled by urban areas can more easily be
converted to other land uses in this pattern (example in Fig. 11a1, b1).
This phenomenon can be suppressed, and a higher-accuracy simulation
pattern can be generated by using a rigid conversion cost
(Fom = 12.37%, Overall accuracy = 0.8332, and Kappa coeffi-
cient = 0.7915). Fig. 11 also shows that the distinctions between the
other two simulation patterns are insignificant, but all the accuracy
indexes are improved by using a flexible conversion cost (Fig. 11,a3,
b3) instead of the rigid conversion costs (Fig. 11, a2, b2). The Fom
value is improved to 12.46%, the overall accuracy is increased to
0.8470, and the Kappa coefficient is increased to 0.7963.

The sensitivity analysis indicates that the simulation results of the
FLUS model are not very sensitive to the flexible conversion cost var-
iations if the rigid conversion cost has been properly set; however,
appropriate conversion cost values improve the simulation accuracy.
Notably, an inappropriate rigid conversion cost can have relatively
large negative effects on the model performance. Hence, the FLUS
model still relies on expert judgment and model calibrations.

4. Scenario simulation of future LUCC in China for 2010–2050

4.1. Scenario description and parameterization

Before simulating the future land use dynamics, the demands for
each land use type should be projected. By using the SD model, we
investigated the influence of multiple driving force variables (economic
development, population growth, technological innovation and climate
change) on land use demands in different scenarios from 2010 to 2050.
Four scenarios are designed based on the IPCC assessment reports (Sohl
et al., 2012) while considering regional climate variations together with
different socio-economic developments in China. As shown in Fig. 12,
four scenarios are designed and organized along two axes, with the
vertical axis representing human influence and the horizontal axis re-
presenting the natural environment. Each scenario is characterized by a
range of alternative future conditions regarding human influence and
the natural environment.

The baseline development scenario (BD_Scenario) is constructed
based on the trajectory of past and current development in China. The
current trends for economic and population development and techno-
logical innovation are assumed to remain continually consistent.
Moreover, the climate is assumed to maintain its current temperature
and precipitation rates (B1 climate scenario in the IPCC report). The
fast development scenario (FD_Scenario) is designed to maximize the
socio-economic benefits in China. The economy and population in-
crease at a high speed, and science and technology develop rapidly.
Additionally, intense climate change occurs in this scenario with sharp
temperature and precipitation increases due to massive human activ-
ities accelerating greenhouse gas emissions and exacerbating

Fig. 12. Configurations of four development scenarios with regard to human and natural effects.

X. Liu et al. Landscape and Urban Planning 168 (2017) 94–116

108



precipitation heterogeneity (A2 climate scenario in the IPCC report).
Contrary to the FD_Scenario, the slow development scenario
(SD_Scenario) is constructed to predict the land use demands under the
influence of slow socio-economic growth and moderate climate change.
The GDP growth rate, population growth rate, and technological in-
novations are assumed to be at the lowest levels in this scenario. In
addition, the scenario is assumed to rarely experience extreme weather
events and has slow annual temperature and precipitation changes
(commitment climate scenario in the IPCC report). Lastly, the harmo-
nious development scenario (HD_Scenario) is a more human-oriented
and sustainable development mode. Steady population growth and
moderate development-oriented economic growth are considered in
this scenario, and the proportion of technological investments is as-
sumed to have more input in agricultural productivity. Moreover, the
natural environment will change moderately (A1B climate scenario in
the IPCC report), which is assumed to have a positive impact on land
use changes in this scenario.

To parameterize these scenarios into the SD model for projecting the
future land use demands, five parameters, including both socio-eco-
nomic and natural influences, are considered in different scenarios:
annual population growth (APG), annual economic growth (AEG), an-
nual technological innovation (ATI), annual temperature change (ATC)
and annual precipitation change (APC). Moreover, these parameters are
set to be slightly different in the four regions to reflect the social and
ecological differences among these regions. The parameterization de-
tails for each scenario in the different regions are shown in Table 6.

As a potential developed country, China has become the fastest-
growing economy worldwide over the past two decades. Although the
economic growth has slowed in recent years (actual GDP growth fell
from 10.4% in 2010 to 7.8% in 2012 to 6.9% in 2015), China is at-
tempting to maintain its annual GDP growth at ∼6.5% in the near
future, according to China’s thirteenth Five Year Plan. Therefore, the
Chinese economy is undoubtedly going to continue to rise. However,
the growth rate is unclear because the Chinese economic policies will

introduce much uncertainty. In this study, four different economic de-
velopment trajectories were designed for the different scenarios with
different annual GDP growth rates over the next 40 years. Closely
linked to the economic growth, the population growth is another im-
portant driving force for land use changes. We established four popu-
lation growth modes that approximately correspond to the economic
trend for each scenario. Technological development is also considered
an important driving factor in the scenario simulations because tech-
nological development not only improves agricultural productivity but
also reduces the land resource consumption necessary to support
human welfare. Based on the current technological development in
China, we assumed different future cases of technological innovation
for the next 40 years in each scenario. Considering the regional dif-
ferences in economic development and population growth, the annual
GDP and population growth are set to be slightly different in the four
sub regions according to historical socio-economic statistical data. The
BD_Scenario tends to follow a moderate trend for economic and po-
pulation development, e.g., the APG (∼0.6%) and AEG (∼7%) main-
tain the current growth levels. The technological investment in agri-
cultural productivity is set to a 10% annual growth rate to be consistent
with the current state. In the FD_Scenario, the population growth and
economic growth are assumed to experience sustained and rapid in-
creases (∼0.9% and 8%, respectively) at the expense of many natural
resources. A 15% growth rate is set for the agricultural productivity ATI
to support the large population expansion and rapid economic devel-
opment. In contrast to the FD_Scenario, the SD_Scenario has a relatively
slow growth rate for both the population (∼0.5%) and the economy
(∼5%), as it is designed to simulate the LUCC under conservative and
environmentally friendly development. A relatively low ATI (5%) is
considered in this scenario. The HD_Scenario is a more idealistic and
sustainable development strategy that maintains a steady and inter-
mediate AEG (∼7%) while protecting the natural environment with
appropriate policies. The population in this scenario is assumed to have
a relatively slow growth rate (0.5%) to reduce the impact on the natural
environment. The ATI growth rate is set to be the highest (20%) among
all the scenarios.

4.2. Land use demand projection

According to the four different scenarios described in the previous
section, the system dynamics model was used to project the land use
demands in the four sub-regions of mainland China under different
development scenarios. A summary of the land use demands in each
scenario over the next 40 years is shown in Fig. 13. As expected, the
urban land area will increase consistently from 2010 to 2050 for all
scenarios due to the population increase. In the FD_Scenario, the urban
land has a dramatic growth to ∼400 thousand km2 by 2050, almost
twice that in 2010. The rapid expansion of urban land in this scenario is
likely due to the fast urbanization process, which requires an increase in
developed areas to accommodate the population and economic growth.
Conversely, the lowest increase in urban land is associated with the
SD_Scenario, which is designed to represent the conservative and en-
vironmentally friendly development scenario. In the BD_Scenario and
HD_Scenario, urban land moderately increases compared to the
SD_Scenario and FD_Scenario. Unlike the urban land demands, the
cultivated land variation tendencies are quite different among the four
designed scenarios. In the SD_Scenario and HD_Scenario, cultivated
land tends to decrease because human activities are likely to occupy
cultivated land around the cities and convert it into urban land. How-
ever, the population pressure in the FD_Scenario and BD_Scenario will
cause an increase in food production demand and result in an increase
in cultivated land. The projected forest land will decline in the
BD_Scenario, FD_Scenario and the SD_Scenario. However, it will in-
crease to a total area of 2.5 million km2 in the HD_Scenario in 2050. The
grassland area moderately increases in the HD_Scenario but remains
relatively stable in the other three scenarios over the next 40 years.

Table 6
Parameterization of the socio-economic and natural factors in the four designed scenarios.

Scenarios Factors NASA
region

NSHS
region

SH region TP region

Baseline
development
scenario (BD)

APG (%/a) 0.65 0.53 0.62 0.91

AEG (%/a) 6.50 6.80 7.00 8.50
ATI(%/a) 10 10 10 10
APC (mm/a) 0.5721 0.8390 0.4770 2.9480
ATC (°C/a) 0.0361 0.0314 0.0452 0.0451

–
Fast development

scenario (FD)
APG (%/a) 0.95 0.67 0.76 1.40
AEG (%/a) 7.50 7.70 7.97 10.03
ATI(%/a) 15 15 15 15
APC (mm/a) 0.8358 1.2259 0.6970 4.3072
ATC (°C/a) 0.0651 0.0567 0.0817 0.0681

Slow development
scenario (SD)

APG (%/a) 0.50 0.34 0.47 0.85
AEG (%/a) 5.50 4.90 5.20 7.24
ATI(%/a) 5 5 5 5
APC (mm/a) 0.0226 0.0331 0.0188 0.1162
ATC (°C/a) 0.0035 0.0030 0.0044 0.0044

Harmonious
development
scenario (HD)

APG (%/a) 0.55 0.47 0.47 0.80
AEG (%/a) 6.80 7.00 6.91 8.12
ATI(%/a) 20 20 20 20
APC(mm/a) 0.7910 1.1601 0.6596 4.0761
ATC (°C/a) 0.0544 0.0474 0.0683 0.0681

Note:.
APG: Annual Precipitation Growth.
AEG: Annual Economic Growth.
ATI: Annual Technological Innovation.
APC: Annual Precipitation Change.
ATC: Annual Temperature Change.
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These forest and grassland increases in the HD_Scenario are likely at-
tributable to the trade-off between the ecological and socio-economic
benefits. In the SD_Scenario, a large amount of grassland, forest and
water will be converted into the unused land (e.g., sandy land, Gobi,
salina, swampland, bare soil, bare rock, alpine desert and tundra). In
the HD_Scenario and the FD_Scenario, however, the unused land tends
to decrease after 2030, indicating that the unused land is used for de-
velopment purposes in these two scenarios.

4.3. Spatial simulation and analysis

Based on the multiple land use demands projected in the previous
section, we used the multiple CA model to simulate the spatial LUCC

dynamics in the four designed scenarios from 2010 to 2050. The si-
mulation results of the BD_Scenario, FD_Scenario, SD_Scenario and
HD_Scenario in 2050 are shown in Fig. 14. The figure shows that the
proposed multiple CA model can predict the spatial pattern of multiple
land use types in 2050. Compared to the actual land use pattern in
2010, we found that the urban land expansion in all scenarios is pri-
marily located around current metropolitan areas and in the eastern
coastal regions. Most of the grassland is distributed in the eastern
Qinghai-Tibetan Plateau and northern Inner Mongolia, while the cul-
tivated lands are predominantly located in the Sichuan Basin and in the
plains, such as the North China Plain, Sanjiang Plain and Songnen Plain
in the Heilongjiang Province. The forest is primarily concentrated in the
southern low hilly areas and the northeast mountainous areas in China.

Fig. 13. Projection of land use demands under different scenarios in mainland China from 2010 to 2050.
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In addition, central northwestern China remains as unused land, in-
cluding a large area of the Gobi Desert, bare soil, and alpine desert. To
better highlight the spatial variability among the different scenarios,
the percent change for each land use type at the local administrative
level is calculated and shown in Fig. 15.

The spatial details of multiple LUCCs among the different scenarios
can be examined at a regional scale. We focus on three enlarged regions
that are representative of the changes in different land use types in
individual scenarios. The first region, located in the NHSH sub-region,
is selected to illustrate the different cultivated land distributions among
the four scenarios (Fig. 16). As shown in the figure, the land surface of
this region is primarily covered by cultivated land, with a number of
forest patches in the east and grasslands scattered in the west. Com-
pared to the actual land use pattern in 2010, the most significant LUCC
in the BD_Scenario involves the large-scale abandonment of cultivated
land in the southwest corner, converted to grassland or unused land,
likely due to soil degradation after excessive reclamation. This scenario
is much more severe in the SD_Scenario due to the conservative de-
velopment strategy. In contrast, much unused land converts to grass-
land and cultivated land by 2050 in the FD_Scenario. This may be due
to the more adequate rainfall and proper reclamation in the two sce-
narios. Since FD_Scenario is marked by rapid population growth and a
fast-growing economy, unused land reclamation is necessary to meet
the large food production demand, leading to the wide expansion of
cultivated land and grassland in this scenario. Compared to the
economy-oriented FD_Scenario, the HD_Scenario is characterized by
sustainable development. It describes a future land use pattern in which
grassland restoration occurs on unused lands as efforts are made to
preserve biodiversity and to improve the ecosystem quality.

Fig. 17 shows the second enlarged region in the Yangtze River Delta,
which is characterized by typical urban land development and expan-
sion under different human and natural impacts. In the economic-or-
iented FD_Scenario, a dramatic expansion of urban land and a corre-
sponding decrease in cultivated land around major metropolitan areas
occurs over the next 40 years. The same occurs at a slightly slower rate
in the BD_Scenario. The rapid expansion of urban areas in these two
scenarios likely results from the demand for infrastructure construction
for socio-economic development and significant population increases.
In contrast, the SD_Scenario has the smallest urban expansion by the
end of 2050 due to lower population pressures and economic growth

during the study period. The HD_Scenario maintains a similar grassland
and forest land pattern compared to the SD_Scenario, even though the
influences of human activities and the natural environment are dif-
ferent between these two scenarios. In addition, a reasonable amount of
urban land expansion occurs, which relieves the pressure of the in-
creasing demand from socio-economic development. Moreover, China's
largest freshwater lake (Poyang lake), located in the southwestern
corner of the region, may experience a significant water area restora-
tion in the HD_Scenario compared to the others. This is due to the
combined effects of a precipitation increase and a series of environ-
mental protection acts for this scenario.

Fig. 18 shows another region located on the border between the
Qinghai and Gansu provinces that illustrates the land use changes in a
farming-pastoral ecotone in an ecologically sensitive region. Compared
to the land use pattern in the baseline year of 2010, both forest and
grasslands in this region experience significant changes in the four
scenarios. The most significant change is the extensive expansion of
forest and grassland in the HD_Scenario. This phenomenon is likely
related to the humid climate conditions that provide sufficient water for
vegetation growth and the environmental development strategy in this
scenario. The grassland in the FD_Scenario slightly decreases and is
converted to cultivated land, likely due to the influences of rapid po-
pulation and economic growth. In contrast, the forest cover will ex-
perience a modest reduction in the BD_Scenario, although forest tends
to experience density increases in some places. Another significant
change in the SD_Scenario is that the forest land sharply declines
throughout the entire region and is converted to grassland. Moreover,
the grassland in the northeast corner decreases significantly and be-
comes unused land due to the lack of precipitation in the SD_Scenario.
These results show that land use changes more prominently in an
ecologically sensitive region.

5. Discussion

In this study, we discussed the FLUS model performance with the
1000-m spatial data in China from 2010 to 2050. The simulated 2010
land use pattern was compared to the actual land use pattern to mea-
sure the model performance. The overall accuracy of the simulated land
use pattern is 0.75 for all land use types, the Cohen’s Kappa coefficient
is 0.67, and the Fom value is 19.62%. Moreover, we compared the

Fig. 14. Simulated spatial pattern of land cover in the four designed scenarios from 2010 to 2050.
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proposed method to the well-accepted Logistic-CA, CLUE-S and ANN-
CA models by applying these three models to the Pearl River Delta
(PRD) region in China for the land use simulation in 2010. The com-
parison shows that the proposed method can simulate the land use

dynamics in a more realistic manner due to the use of the self-adaptive
inertia and competition mechanism. This mechanism allows the model
to process complex local land use interactions and competition.
Moreover, the improvement is attributed to the interactive coupling

Fig. 15. Land cover change percentage at local admin-
istrative level in different scenarios.
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Fig. 16. Simulation of typical cultivated land patterns in different scenarios by 2050.

Fig. 17. Simulation of typical urban land patterns in different scenarios by 2050.
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mechanism, which enables the SD and CA models to evolve colla-
boratively according to the comparison of tightly coupled and loosely
coupled FLUS models. The sensitivity analysis indicates that the model
is insensitive to the conversion cost variation if the conversion cost
values are approximately correlated with the actual regional costs.

Four scenarios in 2050 depicting different development strategies
were designed to consider socio-economic developments (population,
GDP, and technological innovation) and natural climate changes
(temperature and precipitation). Based on the designed scenarios, we
simulated the future land use dynamics of these scenarios, namely, the
baseline development scenario (BD_Scenario), the fast development
scenario (FD_Scenario), the slow development scenario (SD_Scenario)
and the harmonious development scenario (HD_Scenario), by using the
proposed FLUS method. The analysis of these simulated land use pat-
terns yields the following conclusions: 1) Urban land tends to expand in
all scenarios, especially in the fast development scenario (FD_Scenario),
followed by the baseline development scenario (BD_Scenario). Urban
expansion primarily occurs in the eastern coastal area. 2) Cultivated
land significantly increases in the fast development scenario
(FD_Scenario) and baseline development scenario (BD_Scenario) due to
the population pressure. However, in the harmonious development
scenario (HD_Scenario), cultivated land tends to decrease despite a
slight increase in the population, subject to the technological im-
provements. 3) In ecologically sensitive regions, the forest and grass-
land areas will significantly decline if they are not well protected.
Grassland and cultivated land will likely be converted into unused land
due to over-reclamation and a low precipitation rate.

In a future study, we will test the model’s applicability for higher-
resolution simulations. Another limitation associated with this model is
that patch developments cannot be simulated, thus causing simulation
biases. We will improve this in the future by adding a patch develop-
ment mechanism (Chen et al., 2016) to the FLUS model. Moreover, the
FLUS model transition rules (referring primarily to the conversion cost
and the well-trained ANN model) are assumed to be unchanged during

the simulation process, while these rules may change over a long period
(e.g., 50 or 100 years) in the real world. We will invest more effort in
tackling this challenge in future works.

6. Conclusions

Land use simulation models are effective and reproducible tools to
analyze both the causes and consequences of alternative future land-
scape dynamics relative to socio-economic and natural environmental
driving forces. Complex linkage and feedback structures need to be
understood to simulate multiple land use conversions under uncertain
future conditions. In this paper, we present an approach that integrates
top-down system dynamics (SD) with bottom-up cellular automata (CA)
for the simulation of multiple LUCC dynamics. To address the natural
environmental effects, we propose a solution for simulating the spatial
trajectories of multiple LUCCs under human-nature-included scenarios.
The top-down SD model is used to represent the major impacts of socio-
economic and climatic changes on land use demands. A self-adaptive
inertia and competition mechanism is incorporated within the CA
model to process the complex competitions and interactions among the
different land use types. The top-down SD demand projection model
and the bottom-up CA local allocation model are interactively coupled
during the simulation.

The proposed model was applied to the LUCC simulations in China
from 2000 to 2010 to test the model’s applicability and compare it with
other studies. The FLUS model obtained the highest simulation accu-
racy and generated a more realistic land use pattern. The simulation
results in mainland China driven by four future scenarios demonstrate
that the FLUS model can be effectively used to identify hot-spot areas
and analyze both the causes and consequences of future land use dy-
namics, which can help researchers and decision makers draft appro-
priate policies to better adapt to the rapid change of the natural en-
vironment under the background of global climate warming.

In summary, the proposed model is applicable for exploring the

Fig. 18. Simulation of typical farming-pastoral ecotones in different scenarios by 2050.
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impacts of climate change and human activities on future land use
dynamics. The future land use developments in China will need to en-
dure the effects from both climate change and economic/population
growth. Effective measures should be used to address these effects to
sustainably develop China in the future. Therefore, this study shows
that the GeoSOS-FLUS software (available for download at http://www.
geosimulation.cn/flus.html) can conveniently explore the possible
patterns of multiple land use changes under the influence of both
human and natural effects.
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