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 A B S T R A C T

Deep neural networks are increasingly utilized in mobility prediction tasks, yet their intricate internal workings 
pose challenges for interpretability, especially in comprehending how various aspects of mobility behavior 
affect predictions. This study introduces a causal intervention framework to assess the impact of mobility-
related factors on neural networks designed for next location prediction — a task focusing on predicting 
the immediate next location of an individual. To achieve this, we employ individual mobility models to 
synthesize location visit sequences and control behavior dynamics by intervening in their data generation 
process. We evaluate the interventional location sequences using mobility metrics and input them into well-
trained networks to analyze performance variations. The results demonstrate the effectiveness in producing 
location sequences with distinct mobility behaviors, thereby facilitating the simulation of diverse yet realistic 
spatial and temporal changes. These changes result in performance fluctuations in next location prediction 
networks, revealing impacts of critical mobility behavior factors, including sequential patterns in location 
transitions, proclivity for exploring new locations, and preferences in location choices at population and 
individual levels. The gained insights hold value for the real-world application of mobility prediction networks, 
and the framework is expected to promote the use of causal inference to enhance the interpretability and 
robustness of neural networks in mobility applications.
1. Introduction

Accurate individual mobility prediction plays a pivotal role in pop-
ularizing emerging mobility services (Ma and Zhang, 2022) and serves 
as a crucial backbone for various intelligent transport system function-
alities (Tang et al., 2019). Despite its application potential, predicting 
individual mobility remains challenging due to the complexity of mobil-
ity patterns influenced by diverse behavioral factors and contexts (Hong 
et al., 2023b). The intricacies in modeling these spatiotemporal de-
pendencies generally hinder the prediction performance of individual 
mobility (Song et al., 2010b; Barbosa et al., 2018; Wiedemann et al., 
2023a). In recent years, the availability of human digital traces and 
the advancements in data-driven models, particularly deep neural net-
works capable of capturing spatiotemporal dynamics, have significantly 
enhanced mobility prediction ability (Wang et al., 2022).

Despite their solid predictive performance, modern neural networks 
often face criticism for their low interpretability (Manibardo et al., 
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2022; Pappalardo et al., 2023), referring to the degree to which humans 
can comprehend the decision-making process of a model. These net-
works are commonly regarded as ‘‘black boxes’’ because reconstructing 
the reasoning behind a particular prediction is challenging. In mobility 
prediction, the lack of interpretability leads to an unclear understand-
ing of the spatiotemporal patterns captured by the network and, more 
fundamentally, the influence of behavioral factors (such as location 
preferences and activity radius (Yuan et al., 2012)) in prediction. This 
deficiency negatively affects decision-making, policy design, and the 
perceived reliability and trustworthiness among practitioners (Huang 
et al., 2020), thereby impeding the seamless integration of mobility 
prediction networks into real-world applications (Koushik et al., 2020). 
Furthermore, the scarcity of publicly available individual mobility 
datasets, primarily due to the privacy-sensitive nature of personal 
mobility (Wiedemann et al., 2023b), leads to a lack of comparability 
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between existing and newly developed prediction models (Graser et al., 
2023). Prediction networks are evaluated using datasets that include 
varying numbers and types of participants, along with differing track-
ing durations, representing diverse snapshots of the possible mobility 
behavior (Kulkarni and Garbinato, 2019). Hence, a comprehensive 
analysis connecting behavior dynamics with prediction performance is 
imperative to establish benchmark data specifications for evaluating 
modern neural networks employed in mobility studies.

In addition, establishing the behavior and performance connection 
assists in evaluating the robustness of these networks when confronted 
with unforeseen inputs. The optimization of neural networks requires a 
training dataset, making their performances heavily dependent on the 
quality and representativeness of this data (Yin et al., 2022). However, 
mobility behavior evolves dynamically over space and time due to 
internal needs (e.g., behavioral exploration (Hong et al., 2023a)) and 
environmental factors (e.g., land use (Acheampong, 2018)). Conse-
quently, the mobility data encountered during application often reflects 
different behavior than the training data, leading to a discrepancy 
known as domain shift (He et al., 2020). Enhancing our understanding 
of performance under various shift scenarios is essential to assessing 
reliability when applying these networks across diverse geographic 
regions or time periods. Yet, this relationship remains predominantly 
unexplored.

Causal intervention offers a promising tool for generating data 
from diverse environments, enabling the assessment of neural net-
work robustness and providing human-friendly causal explanations for 
these interventions (Xin et al., 2022). Building upon its advantages, 
we present a framework for systematically evaluating the impact of 
mobility behaviors on prediction networks. Specifically, this framework 
utilizes individual mobility models to generate mobility traces, and 
employs causal intervention strategies in the data generation process, 
allowing for flexible modifications of the defined mobility behavior. 
We subsequently assess the performance of trained neural networks 
on these synthetic traces for mobility prediction. Our study focuses 
on next location prediction, which aims to forecast an individual’s 
immediate next location based on their mobility history. The inter-
ventions simulated realistic spatial and temporal changes in mobility 
patterns, leading to performance fluctuations in prediction networks 
that reflect their robustness when confronted with domain shifts. This 
framework facilitates assessing the impact of behavioral factors and 
benchmarking mobility prediction networks, with practical applications 
for evaluating network performances and transferring these networks 
across environments. In short, our contributions are summarized as 
follows:

• We introduce a framework to assess the robustness of mobil-
ity prediction networks through causal intervention. This frame-
work enables direct control over behavioral dynamics, quantify-
ing ensuing mobility patterns, and evaluating their influence on 
network performance.

• We use this framework to simulate spatiotemporal shift scenar-
ios, demonstrating its effectiveness in benchmarking mobility 
datasets, identifying performance degradation during real-world 
applications, and improving the interpretability of prediction net-
works.

• We open-source the framework, enabling straightforward utiliza-
tion and flexible customization of its components.1

2. Related work

2.1. Mobility behavior and its impact on mobility prediction

Research on individual mobility behavior, with an emphasis on spa-
tiotemporal patterns of activities and trips, has consistently been at the 

1 The source code is available at https://github.com/irmlma.
2 
forefront of mobility studies (Chen et al., 2016), propelling theoretical 
and methodological advancements within the activity-based analysis 
framework (Schönfelder and Axhausen, 2016). In this framework, trips 
are perceived as an induced demand resulting from the necessity to 
engage in activities at distinct spatial locations (Axhausen and Gärling, 
1992), making location selection a pivotal aspect in comprehending 
individual mobility behavior (Sener et al., 2011). Studies have con-
sistently shown that location choices not only vary across populations 
(inter-person variability) (Martin et al., 2023b; Ji et al., 2023) but also 
undergo constant changes over time (intra-person variability) (Susilo 
and Axhausen, 2014; Hintermann et al., 2023). Furthermore, these 
decisions are frequently influenced by external factors, some of which, 
when encountered, can lead to sudden structural changes, such as resi-
dential relocation (Ramezani et al., 2021) and large-scale crises (Keller-
mann et al., 2022). These empirical insights emphasize the need to 
study activity location choices from a dynamic perspective (Shou and 
Di, 2018), rather than approaching them solely with static mobility 
snapshots.

Considering the central role of activity, predicting activity loca-
tion is a crucial component in mobility ahead planning and opti-
mization (Ma and Zhang, 2022), and has garnered widespread atten-
tion (Luca et al., 2021). Accurately inferring the next location is influ-
enced not only by the capability of the employed model (e.g., neural 
networks) but also by individuals’ behavioral patterns. In a pioneering 
effort to link mobility behavior with location prediction, Song et al. 
(2010b) proposed entropy as a measure for the theoretical mobility 
predictability based on visited location sequences of individuals. Their 
study revealed remarkably consistent predictability across individuals, 
peaking at approximately 93% in the tested dataset, reflecting inherent 
travel patterns across various demographic attributes (Song et al., 
2010b). Although studies have highlighted their strong correlation with 
the actual prediction performance (Lu et al., 2013), entropy-related 
predictability measures remain challenging to interpret (Teixeira et al., 
2019). Recent research has started to represent mobility behavior with 
more straightforward metrics, such as routine and novelty compo-
nents (Teixeira et al., 2021), usages of transport services (Xu et al., 
2022) and recurring patterns in daily mobility (Hong et al., 2023b), 
and analyze its impact on prediction performance. Nevertheless, our 
comprehension of these connections is still in its early stages, relying on 
observed mobility behavior from tracking datasets, which often exhibit 
limited behavior variability and biased behavior distribution.

2.2. Causal intervention and its application in robustness assessment

The field of causal modeling, which investigates causal relation-
ships, provides a systematic framework for generating mobility traces 
that depict specific behaviors. Establishing a structural causal model 
(SCM) is essential to describe the causal mechanisms within a system 
comprising various interconnected factors. In this context, the data 
generation process is viewed as a causal process, where the input 
variables of the generation model are considered the causes of the 
output, with their relationships modeled through SCM (Rahimi et al., 
2023). With access to a particular SCM, we can perform interventions 
on individual factors or combinations thereof, effectively disentangling 
intricate interactions among variables by unilaterally adjusting the 
value of a single variable and observing its impact on the generated 
data (Pearl and Mackenzie, 2018). Utilizing causal interventions to 
generate controlled results has diverse applications. For instance, in 
prognostic research, causal intervention has been applied to forecast 
risks associated with various medical treatments (van Amsterdam et al., 
2019), examine the impact of therapy on the cognitive development of 
prematurely born infants (Silva, 2016), and investigate the effects of 
demographic variations on brain structure using counterfactual sam-
ples (Pawlowski et al., 2020). Similar strategies have also been applied 
in climate and earth science to unravel the complexities of dynamic 
spatiotemporal processes (Li et al., 2023; Runge et al., 2023).

https://github.com/irmlma
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Fig. 1. Framework for evaluating the robustness of prediction networks through causal interventions. We generate location sequences from mechanistic models and feed them into 
prediction networks to evaluate the prediction performance (blue arrows). This process is repeated for interventional location sequences, obtained by modifying the distribution 
of behavioral parameters (green arrows). The differences in mobility patterns and prediction performances are compared to assess intervention strengths and network robustness 
(red arrows). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Causal intervention methods have demonstrated potential in eval-
uating and enhancing the robustness of neural networks (Schölkopf 
et al., 2021; Moshkov et al., 2024), where robustness refers to the 
degree of performance variations under domain shift (Zhou et al., 
2023). In this study, we used SCM to abstract the data generation pro-
cess of mechanistic mobility simulators, which incorporate parameters 
representing individual behavior to synthesize mobility traces. Note-
worthy simulators include the exploration and preferential return (EPR) 
model (Song et al., 2010a), the location attractiveness model (Yan 
et al., 2017), and the container model (Alessandretti et al., 2020). These 
models have significantly advanced in replicating high-level spatiotem-
poral patterns of individual movements (Pappalardo et al., 2023) and 
are increasingly applied in large-scale simulations (Xu et al., 2018b; 
Barbosa et al., 2018). Representing these models as SCMs enables the 
generation of both in-distribution and out-of-distribution (OoD) data 
by intervening in input variables and adjusting their strengths. For ex-
ample, increasing the tendency of individuals to explore new locations 
in the EPR model allows us to generate mobility data from a more 
explorative population. As a result, various interventions in mobility 
models produce a spectrum of data, each reflecting a realistic domain 
shift, enabling us to assess the robustness of prediction networks in 
different scenarios.

3. Methodology

The overall pipeline for assessing the robustness of prediction net-
works is illustrated in Fig.  1. We start by introducing mechanistic gen-
erative models for synthesizing individual location sequences (§3.1). 
These models incorporate parameters to replicate real-world observa-
tional mobility behavior. Subsequently, we perform interventions by 
modifying the parameters, thereby manipulating mobility behaviors 
and generating new interventional location sequences (§3.2). Lastly, 
we train mobility prediction networks using observational location 
sequences and evaluate them on interventional sequences (§3.3). Pre-
diction performance changes reflect these networks’ robustness when 
behavioral interventions are introduced. In this study, the term location
refers specifically to a geographical place where individuals engage 
in activities. This excludes other points, such as waypoints on roads 
(e.g., GPS recordings) or intermediate stops without meaningful activity 
(e.g., waiting for a bus). We provide a more detailed description of each 
module in the following sections.

3.1. Individual mobility models

Individual mobility models generate realistic movement trajectories 
based on a predefined set of behavioral parameters, allowing for direct 
control over the mobility behavior of the generated population. We 
3 
start with the EPR model (Song et al., 2010a) as our baseline SCM 
and additionally introduce two EPR-based generative models, namely 
density (d)-EPR (Pappalardo et al., 2015) and individual preferential 
transition (IPT) (Zhao et al., 2021). We finally propose the density 
transition (DT)-EPR model that combines the advantages of d-EPR 
and IPT to obtain more realistic mobility traces. Fig.  2 delineates the 
mechanisms of DT-EPR and its connection with d-EPR and IPT models.

EPR generates sequences of location visits for individuals and re-
produces scaling laws for distinct location numbers and their visitation 
frequency over time (Barbosa et al., 2018). The core of EPR is the in-
troduction of two competing mechanisms, exploration and preferential 
return, into classical random-walk models (Brockmann et al., 2006). 
These two mechanisms account for the tendency of individuals to 
return to previously visited locations (Song et al., 2010a). Specifically, 
observing an individual at location 𝑖 at time 𝑡, the model assumes that 
the individual will change their location after a waiting time 𝛥𝑡, where 
𝛥𝑡 is sampled from its distribution 𝑃 (𝛥𝑡). The individual chooses to 
explore a previously unvisited location with probability 𝑝𝑛𝑒𝑤𝑡+𝛥𝑡: 

𝑝𝑛𝑒𝑤𝑡+𝛥𝑡 = 𝜌𝑆−𝛾
𝑡 (1)

where 0 < 𝜌 ≤ 1 and 𝛾 ≥ 0 are parameters that control the exploration 
tendency and 𝑆𝑡 denotes the number of distinct location visited until 
time 𝑡. During this process, a new location is determined by sampling 
a moving distance 𝛥𝑟 from the jump length distribution 𝑃 (𝛥𝑟), with 
the moving direction chosen uniformly at random. After the move, the 
number of visited locations increases from 𝑆𝑡 to 𝑆𝑡+1. Besides exploring 
a new location, the individual could return to a visited location with 
complementary probability 1 − 𝑝𝑛𝑒𝑤𝑡+𝛥𝑡. In this case, the probability of 
moving to a location 𝑗, denoted as 𝛱𝑗 , is proportional to the number of 
previous visits to 𝑗, i.e., 𝛱𝑗 ∝ 𝑓𝑗 , where 𝑓𝑗 is the visitation frequency 
of 𝑗.

Later variants of EPR have modified the search for locations to 
replicate spatial patterns. One such variant is the d-EPR model, which 
addresses the insufficient reproduction of the evolution of the radius of 
gyration (Pappalardo et al., 2015). A population attractiveness factor 
is assigned to each location to model the tendency to visit popular 
locations (Fig.  2 upper panel). In the model, the probability 𝛱𝑗 of 
selecting location 𝑗 during exploration depends on its travel distance 
and attractiveness: 
𝛱𝑗 ∝ 𝑛𝑗𝑟

−2
𝑖,𝑗 (2)

where 𝑟𝑖,𝑗 is the distance between the current location 𝑖 and the 
new location 𝑗, and 𝑛𝑗 denotes the attractiveness, quantified as the 
empirical visits by all individuals to location 𝑗. Furthermore, a subse-
quent study has identified that individuals can travel arbitrarily large 
distances during preferential return, as the location selection of EPR 
is based solely on empirical visit frequency (Zhao et al., 2021). To 



Y. Hong et al. Transportation Research Interdisciplinary Perspectives 31 (2025) 101398 
Fig. 2. Mechanistic generative model DT-EPR. The individual at location 𝑖 visited 𝑆 = 4 locations with a frequency proportional to the size of the location circle at time 𝑡. At 
time 𝑡 + 𝛥𝑡, the individual chooses to either explore a new location with probability 𝑝𝑛𝑒𝑤, where the next location 𝑗 will be chosen based on its population attractiveness 𝑛𝑗 and 
the travel distance 𝑟𝑖,𝑗 (d-EPR mechanism; upper panel), or return to a previously visited location with complementary probability 1 − 𝑝𝑛𝑒𝑤, where the location probability 𝛱𝑗 is 
proportional to the empirical visit frequency from 𝑖 (IPT mechanism; lower panel).
Source: Figure adapted from Song et al. (2010a).
address this limitation, Zhao et al. (2021) proposed the IPT model 
that constrains the preferential return to be conditioned on the current 
location, i.e., imposing a first-order Markov process on location choices 
(Fig.  2 lower panel). The visit probability of location 𝑗 is defined as 
proportional to the number of previous visits from the current location 
𝑖 to 𝑗: 
𝛱𝑗 ∝ 𝑓𝑖→𝑗 (3)

In practice, a personalized Markov transition matrix containing 𝑓𝑖→𝑗
for each location pair is initialized from empirical location visits and 
updated during the generation process.

We combine the exploration mechanism of d-EPR and the prefer-
ential return mechanism of IPT to introduce a new EPR-based model, 
which we refer to as DT-EPR (Fig.  2). Consequently, DT-EPR inherits 
the capacity to capture both population attractiveness and individual 
preferences in location choices. As a result, for each individual 𝑢𝑖 in 
the user set  =

{

𝑢1,… , 𝑢| |

}

, DT-EPR generates a time-ordered 
trajectory 𝑇 𝑖 =

(

𝐿𝑘
)𝑚𝑢𝑖
𝑘=1 composed of 𝑚𝑢𝑖  locations visited by 𝑢𝑖. A 

location 𝐿 contains spatiotemporal information and is represented as 
a tuple of 𝐿 = ⟨𝑙, 𝑝, 𝑡⟩, where 𝑙 is the location identifier, 𝑝 = ⟨𝑥, 𝑦⟩
represents spatial coordinates in a reference system, e.g., latitude and 
longitude, and 𝑡 is the time of visit. Thus, we construct the location set 
𝑖 containing the known location identifiers for individual 𝑢𝑖, and the 
set  =

{

1,… ,| |

} including all locations in the dataset.

3.2. Intervention design

We use empirically estimated behavioral parameters for the DT-
EPR model, generating observational mobility traces. Since DT-EPR is 
a parametric simulator, i.e., parameters have real-world interpreta-
tions with explainable relationships with other model variables, we 
can introduce causal interventions to the data-generating process to 
simulate interventional mobility trajectories. Causal interventions can 
be interpreted as shifts in the observed mobility patterns, representing 
various scenarios, such as spatial shifts when certain locations become 
more or less attractive or temporal shifts in mobility behavior between 
seasons or years.
4 
Considering the modeling mechanisms of the DT-EPR model, we 
perform interventions on the following parameters to simulate compre-
hensive behavior shift scenarios:

• The exploration tendency 𝑝𝑛𝑒𝑤, affecting whether or not to explore 
in the next time step (Eq. (1)). While the number of distinct loca-
tions collectively exhibits sublinear growth (Song et al., 2010a), 
notable inter-person variability in location choices implies vari-
ations in the exploration speed among individuals (Hong et al., 
2023a). In EPR-like models, 𝑝𝑛𝑒𝑤 is determined by parameters 𝜌
and 𝛾, independently sampled for each individual from empirical 
distributions. We introduce interventions on 𝜌 and 𝛾 by altering 
their distributions, producing pseudo-populations with different 
exploration behaviors. Formally, let P(𝜌,𝛾,𝑝𝑛𝑒𝑤)

  be the joint prob-
ability distribution over random variables 𝜌, 𝛾, 𝑝𝑛𝑒𝑤 induced by 
the SCM . We intervene on each of these variables, e.g., for 
the case of 𝜌, we replace the generating mechanism of 𝜌 with a 
new one 𝑓𝜌, i.e., P

(𝜌,𝛾,𝑝𝑛𝑒𝑤)∣𝑑𝑜(𝜌=𝑓𝜌(⋅))
 . The intervention 𝑑𝑜(𝜌 = 𝑓𝜌(⋅))

induces a new probability distribution P(𝜌,𝛾,𝑝𝑛𝑒𝑤)
̃

 with modified 
structural equations that we use for sampling interventional data. 
Additionally, we perform hard interventions on 𝑝𝑛𝑒𝑤 by fixing its 
value to a constant. This intervention removes the time-dependent 
modeling of location exploration, falling back to the assumption 
in the Lévy flight model (Brockmann et al., 2006). Employing the 
same formalism as above, a hard intervention puts point mass 
on a specific outcome of a structural equation, i.e., 𝑑𝑜(𝑝𝑛𝑒𝑤 = 𝑎), 
where 𝑎 is a constant value.

• The population attractiveness 𝑛, affecting location choices during 
exploration (Eq. (2)). We manipulate location attractiveness to 
simulate changes in the population’s spatial preferences. To retain 
location visitation characteristics, we randomly shuffle empirical 
visit numbers for a group of locations. The strength of the in-
tervention can be controlled by adjusting the group of locations, 
e.g., including more locations in the shuffling process introduces 
a more substantial intervention.

• The empirical individual preference 𝑓 , affecting location choices 
during preferential return (Eq. (3)). As individual mobility behav-
ior is dynamic and varies considerably over time, we introduce 



Y. Hong et al. Transportation Research Interdisciplinary Perspectives 31 (2025) 101398 
interventions by manipulating the Markov transition matrix for 
each individual. This is achieved by shuffling the empirical visit 
numbers for a group of locations, which maintains the over-
all number of visits while altering the choice probabilities for 
each location. The strength of the intervention is controlled by 
selecting the location group to include in the shuffling process.

For each intervention, the DT-EPR model generates interventional 
mobility trajectories 𝑇 𝑖 =

(

𝐿𝑘
)𝑚𝑢𝑖
𝑘=1 for individual 𝑢𝑖 ∈  , which share 

an identical data format as the observational mobility traces 𝑇 𝑖.

3.3. Next location prediction networks

To assess the influence of causal interventions, i.e., the impact of 
changes in mobility behavior, we evaluate the predictive capability of 
a neural network trained on observational data but tested on interven-
tional data. We choose next location prediction as the application task. 
Practically, consider a sub-sequence (𝐿𝑘

)𝑛
𝑘=𝑚 ∈ 𝑇 𝑖 visited by individual 

𝑢𝑖 in a time window from time step 𝑚 to 𝑛, the goal is to predict the 
location the same individual will visit in the next time step, i.e., the 
location identifier 𝑙𝑛+1 ∈ . While conventional approaches relied on 
Markov models and matrix factorization methods, recent years have 
witnessed a growing adoption of neural networks (Luca et al., 2021). In 
the following, we present a typical pipeline for applying these networks 
to next location prediction, including generating feature embedding, 
designing the prediction network, and defining a loss function for 
parameter optimization.

An effective location prediction method starts by selecting and 
modeling the information in historical sequences. We include location 
identifiers, the time for location visits, and information regarding the 
individual who conducted the visit. To represent these features, we 
introduce embedding layers that utilize parameter matrices to map the 
original variables to real-valued embedding vectors. For each location 
𝐿𝑘, vector representations of its location identifier 𝑙𝑘 and time of arrival 
𝑡𝑘 are obtained as follows: 
𝑒𝑙𝑘 = ℎ𝑙(𝑙𝑘;𝑾 𝑙) 𝑒𝑡𝑘 = ℎ𝑡(𝑡𝑘;𝑾 𝑡) (4)

where 𝑒𝑙𝑘 and 𝑒𝑡𝑘 are the respective embedding vectors, ℎ(⋅; ⋅) denotes the 
embedding operation, and 𝑾  terms are the learned parameter matrices 
during training. To capture different periodicity, we separately embed 
the minute, the hour, and the day of the week from the visit time 𝑡𝑘. The 
overall embedding vector 𝑒𝑎𝑙𝑙𝑘  is obtained by adding the location and 
temporal embedding vectors: 𝑒𝑎𝑙𝑙𝑘 = 𝑒𝑙𝑘 + 𝑒𝑡𝑘. Additionally, we represent 
the individual 𝑢𝑖 that conducted the travel into a vector 𝑒𝑢𝑖  through a 
user embedding layer, i.e., 𝑒𝑢𝑖 = ℎ𝑢(𝑢𝑖;𝑾 𝑢). Therefore, we obtain the 
overall embedding vector 𝑒𝑎𝑙𝑙𝑘  that encodes spatiotemporal features at 
each time step and the user embedding vector 𝑒𝑢𝑖  corresponding to each 
location sequence.

A location prediction network aims to learn the transition patterns 
between historical location visits in order to predict the next possible 
location. Without loss of generality, this process can be viewed as 
obtaining a (highly non-linear) mapping 𝑔 with learnable parameters 
𝑾 𝑔 between the visit sequence (𝑒𝑎𝑙𝑙𝑘

)𝑛
𝑘=𝑚, user information 𝑒𝑢

𝑖  and 
the ground-truth next location 𝑙𝑛+1, i.e., 𝑙𝑛+1 = 𝑔(

(

𝑒𝑎𝑙𝑙𝑘
)𝑛
𝑘=𝑚 , 𝑒𝑢𝑖 ;𝑾 𝑔). 

When a new visit sequence is observed, the mapping 𝑔 is used to infer 
the predicted next location 𝑙𝑛+1. Various sequential modeling methods 
can be employed to approximate 𝑔, among which Long Short-Term 
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Multi-Head 
Self-Attention (MHSA)-based (Vaswani et al., 2017) networks have 
gained considerable attention in the field. We implement LSTM and 
MHSA-based networks for next location prediction and present details 
of their architectures and realizations in Appendix  A.

In practice, for efficient parameter optimization, the prediction 
network outputs visiting probabilities instead of directly predicting the 
next location: 
𝑃 (𝑙 ) = Softmax(𝑔(

(

𝑒𝑎𝑙𝑙
)𝑛 , 𝑒𝑢

𝑖
;𝑾 𝑔)) (5)
𝑛+1 𝑘 𝑘=𝑚
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where 𝑃 (𝑙𝑛+1) ∈ [0, 1]|| contains visit probabilities of all locations 
at the next time step, and Softmax denotes the softmax operation, 
ensuring 𝑃 (𝑙𝑛+1) is a valid probability distribution. With access to 
the ground truth next location 𝑙𝑛+1 during training, we can regard it 
as a multi-class classification problem, such that the network can be 
optimized using the multi-class cross-entropy loss : 

 = −
||
∑

𝑘=1
𝑃 (𝑙𝑛+1)(𝑘) log(𝑃 (𝑙𝑛+1)(𝑘)) (6)

where 𝑃 (𝑙𝑛+1)(𝑘) represents the predicted probability of visiting the 
𝑘th location (the 𝑘th entry in 𝑃 (𝑙𝑛+1)) and 𝑃 (𝑙𝑛+1)(𝑘) is the one-hot 
represented ground truth, i.e., 𝑃 (𝑙𝑛+1)(𝑘) = 1 if and only if the 𝑘th 
location corresponds to the ground truth next location.

4. Dataset and experiment

4.1. Movement data and preprocessing

Individual mobility models rely on behavioral parameters calibrated 
from real-world data to depict mobility behavior. Smartphone-based 
travel surveys have emerged as a promising method for acquiring 
high-quality spatiotemporal travel behavior data (Harding et al., 2021) 
and are increasingly used for monitoring and studying travel pat-
terns (Joseph et al., 2020; Rout et al., 2021; Mandal et al., 2023). To 
estimate these behavioral parameters, we leverage a smartphone-based 
travel survey conducted by the Swiss Federal Railways (SBB), known as 
the SBB Green Class (GC) E-Car pilot study, which aimed to assess the 
impact of a Mobility-as-a-Service (MaaS) offer on travel behavior (Mar-
tin et al., 2019). The pilot study yielded a large-scale longitudinal GNSS 
tracking dataset from 139 participants located in Switzerland, spanning 
from November 2016 to December 2017. As part of the data collection 
process, participants were asked to install a commercial application 
on their smartphones, which continuously recorded their whereabouts 
from GNSS signals. By analyzing motion measurements such as speed 
and acceleration, the application pre-processed the raw traces to iden-
tify two types of mobility events: stay points representing areas where 
users were stationary, and stages representing continuous movements 
using a single travel mode. Post-tracking analysis revealed that the 
median time between two consecutive GNSS recordings was 13.9 s, 
indicating a high temporal tracking quality of individual movements 
throughout the study period.

We perform a series of preprocessing steps on the GC dataset. First, 
to ensure high-quality tracking data for analysis, we include partic-
ipants with extended tracking periods (observed for more than 300 
days) and high temporal tracking coverage (whereabouts known for 
more than 60% of the time). Then, locations, the basic movement units 
in individual mobility models, are derived from stay point sequences. 
We identify activities from stay points with durations exceeding 25 min. 
Locations are formed by aggregating activity stay points spatially: 
we use the DBSCAN clustering algorithm with parameters 𝜖 = 20
and 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 1 from the Trackintel library to generate dataset -
level locations (Martin et al., 2023a). The longitudinal tracking of 
the GC study provides long-term observations of participants’ daily 
activity location choices, allowing for precise estimation of behavioral 
parameters and a sufficiently large location choice set during mobil-
ity simulations. Since individuals’ tendency to explore new locations 
diminishes significantly over time (Song et al., 2010a; Alessandretti 
et al., 2018), longitudinal observations reduce the occurrences of loca-
tion exploration, thereby mitigating its impact on location prediction 
performance (Cuttone et al., 2018).
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4.2. Realization of mobility models

The preprocessed GC dataset is used to estimate the behavioral 
parameters, including the jump length distribution 𝑃 (𝛥𝑟) for vanilla 
EPR, as well as the waiting time distribution 𝑃 (𝛥𝑡) and distributions 
for exploration tendency (𝑃 (𝜌) and 𝑃 (𝛾)) for EPR-like models. Specif-
ically, we consider the log-normal distribution and the power law 
(including truncated power law) distribution as candidate distributions 
for determining 𝑃 (𝛥𝑟) and 𝑃 (𝛥𝑡) (Alessandretti et al., 2017). We use 
the functions provided by the powerlaw library (Alstott et al., 2014) 
and evaluate the goodness-of-fit using the Akaike information criterion 
(AIC) and Akaike weights (Zhao et al., 2015). Under AIC, both distribu-
tions are best fitted using a log-normal distribution of the probability 
density function 𝑃 (𝑥) = 1

𝑥𝜎
√

2𝜋
exp

(

− (ln(𝑥)−𝜇)2

2𝜎2

)

 with parameters 𝜇|𝛥𝑟 =
7.72, 𝜎|𝛥𝑟 = 2.38, and 𝜇|𝛥𝑡 = 0.75, 𝜎|𝛥𝑡 = 1.49, respectively. To 
estimate exploration tendencies 𝑃 (𝜌) and 𝑃 (𝛾), we calculate the location 
exploration speed and fit normal distributions across individuals. We 
obtain 𝜇|𝜌 = 0.18, 𝜎|𝜌 = 0.07 and 𝜇|𝛾 = 0.64, 𝜎|𝛾 = 0.16, respectively. 
These values are consistent with the numbers presented in Song et al. 
(2010a).

We simulate traces for 800 individuals in the observational dataset 
and each interventional dataset. For each synthetic individual, we 
independently sample 𝜌 and 𝛾 from the distributions 𝑃 (𝜌) and 𝑃 (𝛾), 
respectively, and randomly assign them to start at one of their top-5 
visited locations empirically observed from GC. The generation pro-
cess continues until individuals have visited 2000 locations, which 
approximately matches the tracking length of the GC study.

After obtaining observational location sequences 𝑇 𝑖 and interven-
tional location sequences 𝑇 𝑖, we compare their behaviors using mobility 
metrics:

• The real entropy (Song et al., 2010b) quantifies the regularity 
of location visit sequences by considering the order and fre-
quency of location visits. It provides insights into the theoretical 
predictability of mobility (Hong et al., 2023b).

• The mobility motifs (Schneider et al., 2013) refer to recurring 
sub-structures that arise when representing daily location visits as 
graphs. These motifs represent common mobility patterns shared 
among individuals, and the proportion of motifs for an individual 
reflects the prevalence of these shared patterns (Cao et al., 2019).

We present additional metrics, including radius of gyration
(González et al., 2008), number of transited location pairs (Zhao et al., 
2021), and location visitation frequency (González et al., 2008), in 
Appendix  B.

4.3. Implementation of prediction networks

Next location prediction networks consider the past seven days as 
historical length; that is, the goal is to predict the following loca-
tion an individual will be visiting based on their mobility history in 
the previous seven days. We adopt a common problem formulation, 
where prior mobility knowledge is assumed to be available for each 
individual. Hence, we partition each dataset (i.e., observational and 
interventional) into non-overlapping train, validation, and test sets 
based on time. The splitting ratio is set to 3:1:1, where locations 
occurring in the first 60% of days for each individual are assigned 
to the train set, and the last 20% are assigned to the test set. We 
utilize the observational training set to optimize network parameters, 
and the corresponding validation set to monitor the network loss and 
performance during training. We conduct a grid search to find the 
optimal hyper-parameters that minimize the network loss on the same 
validation set. The considered hyper-parameters, the search ranges, 
and the final selected values can be found in Appendix  A. Finally, 
we evaluate network performances using the held-out test sets from 
observational and interventional traces.

We use the following performance metrics to evaluate the network 
prediction:
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• Accuracy@k (Acc@k) measures the correctness by checking if 
the ground truth location is among the top-𝑘 most likely visited 
locations predicted by the network (in 𝑃 (𝑙𝑛+1) from Eq. (5)). We 
report Acc@1, Acc@5, and Acc@10.

• F1 score (F1) calculates the harmonic mean of precision and 
recall, considering the uneven visitation preferences to locations 
in daily routines. We utilize an F1 score weighted by the visit 
frequency to emphasize the performance in predicting important 
locations.

• Mean reciprocal rank (MRR) assesses the relevance of the recom-
mended locations and is defined as the average reciprocal rank at 
which the ground truth location is identified by the network (in 
𝑃 (𝑙𝑛+1) from Eq. (5)).

5. Results

5.1. Mobility simulation and intervention

Leveraging individual models and empirically estimating their be-
havior parameters, we obtain location traces for synthetic individuals. 
The generation result is illustrated in Fig.  3, where we map a selected 
individual’s locations and plot the entropy and motifs proportion mea-
sures for the entire dataset. The spatial distribution of location visits 
(Fig.  3A) clearly shows the patterns exhibited by EPR-like models. 
The vanilla EPR model assigns visit probabilities based solely on the 
geographical distance, thus generating location visits clustered around 
a central area. While the traces obtained from a d-EPR model are more 
concentrated in large cities, the locations generated by an IPT model 
are more dispersed in space, reflecting the empirical knowledge of that 
specific individual. Finally, the DT-EPR model combines the advantages 
of both d-EPR and IPT models, producing traces that prioritize locations 
within urban areas (population attractiveness) and occasionally occur 
in distant sites (personal preferences). Furthermore, we quantitatively 
assess the regularities of the synthetic sequences at the dataset level 
(Fig.  3B and C). EPR and d-EPR exhibit the highest entropy and lowest 
motifs proportion among all mobility models, indicating that their 
location visit patterns are irregular and hard to predict. Although the 
d-EPR model introduces population attractiveness in the exploration 
phase, it does not alter the process of visiting known locations, which 
is the primary mechanism underlying mobility’s regularity. On the 
contrary, DT-EPR incorporates the first-order Markov dependence on 
location visits, producing the most regular location visitation patterns, 
as evidenced by the lowest entropy and highest motif proportion distri-
butions among all models. Another intriguing observation arises when 
comparing the distributions of the generated traces with those from the 
real data. The result from DT-EPR displays lower entropy, signifying 
higher regularity in location visits, but generally has a lower motifs 
proportion compared to the real traces (labeled as GC in Fig.  3B and 
C).

Next, we introduce causal interventions to the data-generation pro-
cess and assess their direction and impact using mobility metrics. Fig.  4 
displays the distributions of mobility entropy and motifs proportion for 
both observational and interventional location sequences from DT-EPR. 
The latter are generated by implementing interventions on individuals’ 
exploration tendencies. Additional metrics for describing the impact of 
these interventions can be found in Appendix  B. The interventions on 
population-level attractiveness and individual-level preference preserve 
the general visitation characteristics; hence, high-level mobility metrics 
cannot accurately reflect their impact.

The interventions can effectively and directionally change the un-
derlying mobility pattern, as demonstrated by the shifts in the mobility 
metric distributions, shown in Fig.  4. For example, with an increase in 
the exploration tendency 𝑝𝑛𝑒𝑤, individuals are encouraged to visit new 
locations, resulting in an increasingly higher number of transited loca-
tion pairs (Appendix  B) and leading to mobility sequences with higher 
entropy and lower motifs proportion (Fig.  4A). Moreover, the impact 
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Fig. 3. Synthetic location visits generated by EPR-like individual mobility models. (A) Spatial distribution of location visits for an exemplary user. (B) Mobility entropy and (C) 
motifs proportion distributions of the generated population. Map data © OpenStreetMap contributors, © CARTO.
Fig. 4. The entropy and motifs proportion distributions of observational and interventional location sequences. We show the metric distributions for (A) hard interventions on 
𝑝𝑛𝑒𝑤, (B) interventions on 𝜌 by shifting 𝜇|𝜌 of 𝑃 (𝜌), and (C) interventions on 𝛾 by shifting 𝜇|𝛾 of 𝑃 (𝛾).
on the generated location sequences can be compared among the 
different interventions. While intervening on the exploration tendency 
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𝑝𝑛𝑒𝑤 significantly alters the mobility patterns (Fig.  4A), changes induced 
by exploration parameters 𝜌 and 𝛾 are more nuanced and provide more 
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Table 1
Next location prediction performances for observational location sequences from EPR-like models. The mean and standard deviation across five runs with different random parameter 
initializations are reported.
 Networks Datasets Acc@1 (%) Acc@5 (%) Acc@10 (%) F1 (%) MRR (%)  
 

LSTM

EPR 1.1 ± 0.03 2.8 ± 0.04 3.9 ± 0.02 0.3 ± 0.01 2.2 ± 0.03  
 d-EPR 1.2 ± 0.04 3.2 ± 0.1 4.6 ± 0.1 0.4 ± 0.04 2.5 ± 0.05  
 IPT 17.3 ± 0.3 25.8 ± 0.3 28.8 ± 0.2 11.2 ± 0.1 21.4 ± 0.2  
 DT-EPR re-generated 25.1 ± 0.2 35.1 ± 0.2 38.5 ± 0.2 17.8 ± 0.2 30.0 ± 0.2  
 DT-EPR trained 55.0 ± 0.1 62.9 ± 0.1 64.6 ± 0.05 46.2 ± 0.2 58.6 ± 0.1  
 

MHSA

EPR 0.8 ± 0.01 2.4 ± 0.02 3.7 ± 0.02 0.3 ± 0.01 2.0 ± 0.01  
 d-EPR 0.9 ± 0.01 2.8 ± 0.02 4.2 ± 0.04 0.4 ± 0.01 2.2 ± 0.01  
 IPT 15.0 ± 0.2 23.7 ± 0.4 27.3 ± 0.4 10.6 ± 0.1 19.3 ± 0.2  
 DT-EPR re-generated 24.4 ± 0.1 33.8 ± 0.2 37.5 ± 0.2 18.7 ± 0.04 29.0 ± 0.1  
 DT-EPR trained 55.8 ± 0.02 62.7 ± 0.04 64.4 ± 0.03 47.3 ± 0.04 59.1 ± 0.02 
fine-grained control (Fig.  4B and C). In summary, mobility metrics 
facilitate the description and comparison between observational and 
interventional location sequences, allowing us to assess the direction 
and strength of the interventions on mobility behavior.

5.2. Next location prediction

Thanks to the mobility simulation models and the causal interven-
tion process, we can assess the performance of predictive networks 
when confronted with distribution shifts. We begin by comparing the 
performance of LSTM and MHSA on mobility sequences synthesized by 
different variants of the EPR model (Table  1), thereby uncovering the 
influence of generative mechanisms. These networks are trained with 
location sequences from DT-EPR and evaluated on datasets obtained 
using the same observational parameters but different ablations of its 
components. We also assess their performances on a new DT-EPR pop-
ulation with different initializations (e.g., for each individual a newly 
sampled start location, 𝜌, and 𝛾; see §4.2 for details of the mobility 
model realization). This variant is denoted as DT-EPR re-generated in 
Table  1, with the network performance differences reflecting the effect 
of induced randomness in the mobility model. When evaluated on the 
training population (DT-EPR trained in Table  1), MHSA demonstrates 
a stronger capability to infer the next location compared to LSTM, as 
indicated by the higher performance indicators Acc@1, F1, and MRR. 
However, LSTM outperforms MHSA when confronted with all other 
populations, i.e., when predicting for location sequences on which 
the network was not trained, demonstrating superior generalization 
ability. In addition, both networks exhibit the worst performance when 
provided with sequences obtained from the vanilla EPR model, indi-
cating the absence of clear transition patterns in these sequences – a 
property overlooked by the EPR mechanism. As a further enhancement 
to the model, IPT enables the generation of location sequences with 
transition patterns that a predictive network can utilize to infer the next 
location. Moreover, incorporating population preferences during explo-
ration imposes essential structural patterns in location visit sequences, 
as evidenced by the increase in prediction performance between EPR 
and d-EPR, as well as IPT and DT-EPR. These structural patterns are not 
apparent in the entropy and motifs proportion distributions (Fig.  3), yet 
they contribute to increasing the accuracy of next location prediction 
(Table  1).

5.3. Robustness of location prediction networks

We now evaluate networks’ performance using interventional mo-
bility sequences, which reveal their robustness in OoD scenarios, i.e.,
when the training and testing data are not generated from the same 
underlying distribution. Fig.  5 displays the variations in Acc@1 and 
MRR scores of the LSTM and MHSA networks for interventions on 
exploration tendency, and Fig.  6 depicts the performance variation plot 
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for interventions on population attractiveness and individual prefer-
ence. The complete performance results for all conducted interventions 
are presented in Appendix  C. The prediction networks remain consis-
tent with those described in the previous section, i.e., they are trained 
using observational location sequences from DT-EPR. Consequently, 
the performance metrics in OoD scenarios can be cross-compared with 
those presented in Table  1. Although similar performance trends are 
observed for both networks, LSTM consistently outperforms MHSA in 
OoD settings, confirming the observation from the previous results.

The performance variations for exploration interventions (Fig.  5) 
generally align with their strengths and directions, as measured us-
ing mobility metrics shown in Fig.  4. We also observe non-linear 
relations between intervention strength and prediction performance. 
In particular, the hard interventions on 𝑝𝑛𝑒𝑤 significantly influence 
the prediction capability. Setting 𝑝𝑛𝑒𝑤 > 0.5 results in performance 
indicators of Acc@1 < 10% and MRR < 10%, suggesting that the learned 
location transition patterns cannot be adequately utilized. Compara-
tively, interventions on 𝛾 and 𝜌 indirectly affect 𝑝𝑛𝑒𝑤, which retains the 
diminishing exploration speed over time. As a result, influences on next 
location prediction are milder, e.g., the Acc@1 still achieves ∼ 18%
with the strongest implemented interventions (𝜇|𝜌 = 0.9 and 𝜇|𝛾 =
0.1). Moreover, we observe the prediction performances are relatively 
stable for 𝜇|𝜌 ∈ [0.1, 0.3] and 𝜇|𝛾 ∈ [0.5, 0.9], even though the location 
sequences continue to exhibit lower mobility entropy and higher mo-
tifs proportion (Fig.  4) due to decreasing exploration tendency. This 
saturation suggests that even if individuals explore new locations at a 
lower rate, many location visit patterns are inherently stochastic and 
complex, making them challenging to capture by a trained network.

Interventions on population attractiveness and individual prefer-
ence reveal how altering visit frequencies for specific locations affects 
the prediction performances, as shown in Fig.  6. In each intervention, 
we consider a set of locations and randomly shuffle their empirical visi-
tation numbers within the group; for instance, in the shuffling process, 
‘‘top 1%’’ includes the most frequently visited 1% of locations across 
the population (Fig.  6A), and ‘‘top 3’’ considers the three most visited 
locations for each individual (Fig.  6B). Both types of interventions sub-
stantially impact the ability to correctly predict the next location, with 
altering the number of visits separately for each individual showing 
a stronger influence, as evidenced by the higher drop in performance 
indicators. When compared with the observational datasets (Table  1), 
even changes in preference for a few most critical locations (e.g., ‘‘top 
0.1%’’ for location attractiveness or ‘‘top 3’’ for individual preferences) 
result in a significant prediction capability decrease. On the contrary, 
intervening on a large portion of locations that are not frequently 
visited (i.e., ‘‘last 30%’’ and ‘‘last 60%’’ for location attractiveness) 
has minimal impact on the prediction performances. These results 
emphasize the indispensable role of essential locations in shaping daily 
mobility and reveal their relation with the generalization ability of next 
location prediction networks.
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Fig. 5. Next location prediction performances for interventions on individuals’ exploration tendency. We show the variations in Acc@1 and MRR for (A) hard interventions on 
𝑝𝑛𝑒𝑤, (B) interventions on 𝜌 by shifting 𝜇|𝜌 of 𝑃 (𝜌), and (C) interventions on 𝛾 by shifting 𝜇|𝛾 of 𝑃 (𝛾).

Fig. 6. Next location prediction performances for interventions on population attractiveness and individual preference. We show the variations in Acc@1 and MRR for (A) 
randomizing empirical location visits of the dataset, and (B) randomizing empirical location visits for each individual.
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6. Discussion

This study has assessed the robustness of neural networks on the 
next location prediction task. We implement multiple individual mo-
bility simulation models, on which we conduct causal interventions to 
synthesize mobility traces when structural changes occur. These inter-
ventional mobility traces are then used as input for trained networks 
and evaluated for location prediction. The examination of mobility sim-
ulators revealed that the vanilla EPR fails to generate sequences with 
realistic visitation order, while IPT tends to produce over-regular se-
quences by explicitly incorporating the first-order Markov dependence 
(Fig.  3). These findings highlight the need for further developments in 
individual mobility models, essential for visit order-sensitive applica-
tions, such as mobility prediction (Ma and Zhang, 2022), autonomous 
vehicles scheduling (Li and Liao, 2020), and smart charging opti-
mization (Cai et al., 2022). Moreover, the comparison between the 
two sequence modeling networks, LSTM and MHSA-based, reveals 
their generalization characteristics. While the MHSA-based network 
performs better when predicting locations for the same population, 
LSTM demonstrates higher generalization capability when dealing with 
sequences sampled OoD.

Performing causal interventions on the mobility simulators enables 
us to control the strength and direction of mobility behavior. These 
interventions quantitatively reveal the behavioral impact on location 
predictors and have practical implications for downstream applications. 
We establish a connection between exploration tendency, mobility 
behavior, and prediction performance using mobility metrics, provid-
ing a benchmark for comparing existing or newly developed mobility 
prediction networks, potentially on other datasets. This enables future 
studies to evaluate their population’s mobility behavior and determine 
whether their networks perform better than those reported in this 
study. Additionally, this connection aids in selecting target popula-
tions for predictive networks (Solomon et al., 2021) and preemptively 
assessing the performance of demographic groups (Baumann et al., 
2018). An improved understanding of prediction networks reveals the 
priorities in enhancing their behavioral robustness, which greatly ben-
efits real-world applications such as enhanced location-based mobility 
services (e.g., on-demand mobility (Kieu et al., 2020)) and traffic 
management (Sun and Kim, 2021).

The findings from location interventions indicate that shifts in 
spatiotemporal preferences significantly affect prediction network per-
formance. However, these preference shifts cannot be differentiated 
using high-level mobility metrics, as they alter location choices while 
maintaining the empirical visitation distribution. This observation high-
lights the need to develop change detection methods for identifying 
precise mobility behavior change points or periods (Hong et al., 2021; 
Roy et al., 2023). Moreover, our results reveal that preference changes 
in the essential locations have a much more significant effect on the 
prediction network than changes in the less visited ones. Recent studies 
on intra-person variability of travel behavior suggest that individuals 
constantly update their important locations over time (Järv et al., 2014; 
Alessandretti et al., 2018). This implies that real-world deployment 
of mobility prediction networks requires integrating online learning, 
where networks are continuously updated as new data arrives (van 
Lint, 2008; Jiang et al., 2018). In the online learning framework, this 
study can help identify the point at which the network’s performance 
becomes insufficient and subsequently update network parameters to 
adapt to evolving mobility behavior.

7. Conclusion

Unraveling the role and impact of multifaceted mobility behavior 
on prediction outcomes is imperative to the real-world application of 
mobility prediction systems. Here, we present a framework to examine 
how behavioral factors influence mobility prediction networks through 
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causal interventions. Using mechanistic mobility models with parame-
ters that capture mobility behaviors, we perform causal interventions 
on these parameters to generate mobility traces that mirror real-world 
behavior variations. Quantitative evaluation using mobility metrics 
demonstrates our capability to effectively and deliberately modify be-
haviors. Subsequently, we evaluate these interventional traces with 
well-trained networks for the next location prediction task, and the 
resulting performance variations indicate the robustness of networks 
confronting domain shifts. Our results reveal vital behavior factors 
affecting prediction performance, including sequential location tran-
sition patterns, the tendency to explore new locations, and location 
preferences at both population and individual levels. These findings 
demonstrate the framework’s effectiveness and pave the way for vari-
ous downstream applications, including cross-comparisons among pre-
diction networks and performance monitoring in dynamically evolving 
spatiotemporal scenarios.

As one of the pioneering studies to explore the causal impact of 
mobility behavior on individual mobility prediction, this research sheds 
light on several directions for future work. The proposed framework 
can be applied to any mechanistic generation model abstracted as 
an SCM. Our interventions focus on the EPR model and its exten-
sions, and our results are fundamentally limited by their capability to 
simulate activity location choices. Future research should investigate 
other mobility simulation models, such as location attractiveness (Yan 
et al., 2017) and container (Alessandretti et al., 2020), to examine the 
impact of alternative behavioral mechanisms on mobility prediction. 
In addition to factors that describe mobility, quantifying the causal 
effects of contexts (e.g., urban functions, land use, and weather situ-
ations) on mobility behavior is a promising direction. This endeavor 
would require a mechanistic model that explicitly formulates the re-
lationship between contextual factors and mobility behavior, which 
could be inferred using causal discovery methods (Runge et al., 2023). 
Last, counterfactuals offer greater causal reasoning capabilities than 
interventions, as outlined in the three-layer causal hierarchy of asso-
ciation (layer 1), intervention (layer 2), and counterfactual (layer 3) 
by Pearl and Mackenzie (2018). Exploring counterfactual explanations 
for prediction networks provides actionable suggestions that can lead to 
desirable alternative outcomes (Xin et al., 2022). This aspect is crucial 
for the real-world deployment of mobility prediction systems, even 
though its full potential remains to be realized. In conclusion, we expect 
this study to stimulate innovative approaches that leverage causal infer-
ence to improve the interpretability and robustness of neural networks 
when applied to mobility analysis and prediction.
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Fig. A.1. Network structure of (A) the LSTM network and (B) the MHSA-based network.
Appendix A. Prediction network and implementation

In this section, we introduce the fundamental components of LSTM 
and MHSA-based networks, detailing their implementation and training 
processes. For specific modifications to enhance performance in the 
next location prediction task, we refer readers to Solomon et al. (2021) 
and Hong et al. (2023b), respectively.
LSTM network. Initially proposed by Hochreiter and Schmidhuber 
(1997), LSTM improves over the vanilla recurrent neural network 
(RNN) for learning temporal dependencies in sequence data by address-
ing the vanishing gradient issue through its architecture design. The 
network processes input sequentially and, at each step 𝑡, utilizes three 
‘‘gates’’ – forget gate 𝑓𝑡, input gate 𝑖𝑡, and output gate 𝑜𝑡 – to learn the 
dependencies between the current input 𝑒𝑎𝑙𝑙𝑡  and previous information, 
stored in a cell state 𝐶𝑡−1 and a hidden state ℎ𝑡−1 (Fig.  A.1A). This 
gate-updating process can be formulated as follows:
𝑓𝑡 = 𝜎((𝑒𝑎𝑙𝑙𝑡 ⊕ ℎ𝑡−1) ⋅𝑾 𝑓 ) (7)

𝑖𝑡 = 𝜎((𝑒𝑎𝑙𝑙𝑡 ⊕ ℎ𝑡−1) ⋅𝑾 𝑖) (8)

𝑜𝑡 = 𝜎((𝑒𝑎𝑙𝑙𝑡 ⊕ ℎ𝑡−1) ⋅𝑾 𝑜) (9)

where ⊕ denote the concatenation operation and 𝜎 is the sigmoid 
function. Then, the current cell state 𝐶𝑡 and hidden state ℎ𝑡 can be 
updated as follows:
�̃�𝑡 = tanh((𝑒𝑎𝑙𝑙𝑡 ⊕ ℎ𝑡−1) ⋅𝑾 𝐶 ) (10)

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ �̃�𝑡 (11)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡) (12)

where ⊙ denotes the Hadamard product. Finally, 𝐶𝑡 and ℎ𝑡 are carried 
forward to the next step. ℎ𝑡, encapsulating all information up to the 
current step, can also be used to infer predictions.
MHSA-based network. First introduced in Vaswani et al. (2017), the 
MHSA-based network extends the attention mechanism and has become 
widely adopted in sequential modeling tasks for its efficiency and 
ability to capture complex dependencies across the entire sequence. In 
contrast to LSTM, the MHSA-based network processes the input all at 
once: an embedding matrix 𝒆𝑎𝑙𝑙 is constructed by stacking embedding 
vectors in sequence order (Fig.  A.1B). This input is then passed through 
a stack of 𝑁 identical layers, each containing a masked multi-head 
attention block and a fully connected feedforward network with two 
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Table A.1
Hyper-parameter search for next location prediction networks. 
 Network Hyper-parameter Search range Optimal value 
 LSTM Embedding dim. {32, 64, 128} 64  
 Hidden dim. {64, 128, 256, 512} 128  
 
MHSA-based

#Heads 𝐻 {2, 4, 8} 8  
 #Layers 𝑁 {2, 4, 6} 4  
 Embedding dim. {32, 64, 128} 64  
 Feed-forward dim. {64, 128, 256, 512} 256  

linear layers and a ReLU activation function. Residual connections (He 
et al., 2016) and layer normalizations (Ba et al., 2016) are applied 
to each layer. The multi-head attention block uses scaled dot-product 
attention to compute output values based on queries and sets of key–
value pairs, efficiently implemented by packing into matrices Q, K, and 
V (Vaswani et al., 2017): 

Attention(𝑄,𝐾, 𝑉 ) = Softmax( 𝑄𝐾𝑇
√

𝑑𝑖𝑚
) ⋅ 𝑉 (13)

where 𝑑𝑖𝑚 is the size of the query vector. Multi-head attention is 
constructed by scaling the matrices Q, K, and V, and concatenating the 
results of 𝐻 attention functions:

MultiHead(𝑄,𝐾, 𝑉 ) = (ℎ𝑒𝑎𝑑1 ⊕⋯⊕ ℎ𝑒𝑎𝑑𝐻 ) ⋅𝑾 𝑂 (14)

where ℎ𝑒𝑎𝑑𝑖 = Attention(𝑄𝑾 𝑄
𝑖 , 𝐾𝑾 𝐾

𝑖 , 𝑉𝑾 𝑉
𝑖 ) (15)

In each multi-head attention block, the key, value, and query matri-
ces are identical and correspond to the output of the previous block. In 
addition, forward-masking operations are included to prevent attention 
operations from accessing information from future time steps.

Implementation and training details. During training, we minimize
Eq. (6) with the Adam optimizer (Kingma and Ba, 2015) on batches of 
training data samples. We use a batch size 256, and zeros are appended 
to the end of each input sequence until its length matches the longest 
sequence, ensuring consistent length within each batch. The initial 
learning rate is set to 1𝑒−3, and an L2 penalty of 1𝑒−6 is applied to 
the network loss. We adopt an early stopping strategy, which drops 
the learning rate by 0.1 if the validation loss does not decrease for 3 
consecutive epochs. This early stopping process is repeated 3 times.
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Fig. B.2. The radius of gyration (Rg), number of transited location pairs, and location visitation frequency distributions of observational and interventional location sequences. 
We show the metric distributions for (A) hard interventions on 𝑝𝑛𝑒𝑤, (B) interventions on 𝜌 by shifting 𝜇|𝜌 of 𝑃 (𝜌), and (C) interventions on 𝛾 by shifting 𝜇|𝛾 of 𝑃 (𝛾).
The tuned hyper-parameters and their search ranges are shown in 
Table  A.1. We determine the optimal set of values as the one that 
minimizes the network loss on the validation set of the observational 
traces from DT-EPR.

Appendix B. Additional metrics for describing mobility behavior

Apart from the mobility metrics elucidated in the main text, we 
introduce additional metrics to characterize mobility behavior within 
both observational and interventional location visitation sequences:

• The radius of gyration (González et al., 2008) measures the 
characteristic distance traveled by an individual and is commonly 
used to reflect their movement intensity in the spatial dimen-
sion. Its dataset distribution reveals the heterogeneity in user 
movement (Xu et al., 2018a).

• The number of transited location pairs (Zhao et al., 2021) mea-
sures the number of links in an individual mobility graph, where 
locations are represented as nodes and travels between locations 
are represented as edges.

• The location visitation frequency distribution (González et al., 
2008) is known to adhere to Zipf’s law, where individuals tend to 
spend the majority of their time at a small number of frequently 
visited locations. The exponent of this power law, which char-
acterizes the shape of the distribution, reveals the frequency of 
important location visits and can serve as an indicator of mobility 
regularity.

Fig.  B.2 illustrates alterations in mobility patterns resulting from 
interventions on the exploration behavior, assessed using the previously 
mentioned metrics. Notably, these interventions induced changes in the 
12 
population’s mobility intensity, quantified by the radius of gyration. Al-
though these interventions had a marginal impact on the prevalence of 
individuals traveling shorter distances, they substantially reduced the 
likelihood of encountering individuals with extensive travel patterns as 
exploration declined (lower 𝑝𝑛𝑒𝑤 and 𝜇|𝜌, and higher 𝜇|𝛾 ). As expected, 
a reduction in exploration inclination led to fewer transited location 
pairs per day (Fig.  B.2 middle panel) and a significant decrease in the 
visitation frequency of the most frequently visited locations (Fig.  B.2 
right panel).

Appendix C. Network performances on interventional location se-
quences

The complete performance evaluation results for LSTM and MHSA-
based networks on all simulated interventional location sequences are 
presented in Table  C.2 and Table  C.3, respectively. We report the mean 
and standard deviation across five network optimization runs with 
different random parameter initializations. Additionally, we note that 
generative mechanisms in the mobility model introduce variations in 
synthesized location sequences (e.g., randomness from mobility model 
initializations; see §5.2 and Table  1), affecting mobility predictability 
and prediction performance. Therefore, we suggest focusing on the 
overall variation trend for interventions rather than exact performance 
numbers.

Data availability

Raw data for the GC dataset are not publicly available due to con-
fidentiality agreements with the participants under GDPR. The source 
code is available at https://github.com/irmlma.

https://github.com/irmlma
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Table C.2
Performance of the LSTM model in predicting the next location on interventional location sequences. The mean and standard deviation across five runs with different random 
parameter initializations are reported.
 Intervention Strength Acc@1 (%) Acc@5 (%) Acc@10 (%) F1 (%) MRR (%)  
 

𝑝𝑛𝑒𝑤

0.1 33.0 ± 0.6 49.8 ± 0.6 55.3 ± 0.6 28.9 ± 0.5 40.8 ± 0.6  
 0.25 23.0 ± 0.3 34.8 ± 0.1 38.7 ± 0.1 16.2 ± 0.1 28.6 ± 0.3  
 0.5 7.9 ± 0.1 12.4 ± 0.03 14.4 ± 0.05 3.6 ± 0.1 10.3 ± 0.04 
 0.75 1.9 ± 0.1 3.7 ± 0.1 4.9 ± 0.1 0.6 ± 0.04 3.0 ± 0.1  
 0.9 0.9 ± 0.04 2.3 ± 0.1 3.5 ± 0.1 0.3 ± 0.03 1.9 ± 0.1  
 

𝜇|𝜌

0.1 33.0 ± 0.7 50.7 ± 0.7 56.5 ± 0.4 29.2 ± 0.6 41.2 ± 0.7  
 0.2 32.7 ± 0.4 48.0 ± 0.3 53.0 ± 0.6 28.3 ± 0.3 39.9 ± 0.2  
 0.3 31.7 ± 0.5 45.8 ± 0.4 50.4 ± 0.3 25.9 ± 0.4 38.3 ± 0.3  
 0.4 29.8 ± 0.4 42.4 ± 0.4 47.1 ± 0.3 23.5 ± 0.4 35.8 ± 0.3  
 0.5 27.3 ± 0.3 38.9 ± 0.3 42.9 ± 0.2 20.5 ± 0.3 32.8 ± 0.2  
 0.7 23.4 ± 0.1 32.4 ± 0.1 35.7 ± 0.1 16.2 ± 0.1 27.8 ± 0.1  
 0.9 18.6 ± 0.05 25.8 ± 0.1 28.3 ± 0.1 11.5 ± 0.2 22.2 ± 0.1  
 

𝜇|𝛾

0.1 16.7 ± 0.1 24.2 ± 0.1 26.9 ± 0.1 10.2 ± 0.1 20.4 ± 0.1  
 0.2 25.9 ± 0.3 36.0 ± 0.2 39.4 ± 0.3 18.6 ± 0.2 30.8 ± 0.2  
 0.3 31.3 ± 0.3 44.2 ± 0.2 48.2 ± 0.6 24.8 ± 0.1 37.4 ± 0.2  
 0.4 32.9 ± 0.4 47.1 ± 0.2 51.7 ± 0.2 27.1 ± 0.2 39.6 ± 0.3  
 0.5 31.6 ± 0.4 46.3 ± 0.4 51.2 ± 0.3 26.9 ± 0.5 38.5 ± 0.3  
 0.7 35.6 ± 0.7 51.4 ± 0.4 56.7 ± 0.7 31.6 ± 0.7 42.9 ± 0.6  
 0.9 33.8 ± 0.6 51.2 ± 0.5 57.0 ± 0.9 30.0 ± 0.5 41.8 ± 0.4  
 

Attractiveness

top 0.1% 22.4 ± 0.2 32.6 ± 0.2 35.8 ± 0.2 15.5 ± 0.3 27.3 ± 0.1  
 top 1% 21.3 ± 0.2 30.9 ± 0.1 34.4 ± 0.2 14.6 ± 0.1 26.0 ± 0.1  
 top 5% 20.2 ± 0.2 30.1 ± 0.3 33.4 ± 0.1 13.5 ± 0.2 25.0 ± 0.2  
 top 10% 19.3 ± 0.3 28.4 ± 0.2 31.5 ± 0.2 12.6 ± 0.2 23.7 ± 0.2  
 last 30% 24.5 ± 0.3 35.0 ± 0.1 38.5 ± 0.1 17.5 ± 0.2 29.5 ± 0.2  
 last 60% 23.5 ± 0.2 33.1 ± 0.3 36.3 ± 0.1 16.5 ± 0.1 28.1 ± 0.2  
 

Preference

top 3 21.6 ± 0.2 31.7 ± 0.2 35.4 ± 0.1 14.9 ± 0.2 26.5 ± 0.2  
 top 5 19.5 ± 0.3 30.4 ± 0.2 34.1 ± 0.2 13.5 ± 0.2 24.7 ± 0.2  
 top 10 18.4 ± 0.2 28.3 ± 0.3 31.8 ± 0.4 12.5 ± 0.1 23.2 ± 0.2  
 top 30 15.9 ± 0.3 26.2 ± 0.2 29.8 ± 0.3 10.7 ± 0.2 20.9 ± 0.2  
 top 100 14.5 ± 0.5 23.7 ± 0.3 27.2 ± 0.3 9.4 ± 0.3 19.0 ± 0.3  
Table C.3
Performance of the MHSA-based network in predicting the next location on interventional location sequences. The mean and standard deviation across five runs with different 
random parameter initializations are reported.
 Intervention Strength Acc@1 (%) Acc@5 (%) Acc@10 (%) F1 (%) MRR (%)  
 

𝑝𝑛𝑒𝑤

0.1 30.0 ± 0.5 48.0 ± 0.9 54.2 ± 0.8 26.6 ± 0.3 38.4 ± 0.7  
 0.25 21.1 ± 0.3 32.7 ± 0.1 36.9 ± 0.2 16.1 ± 0.1 26.7 ± 0.2  
 0.5 9.0 ± 0.04 13.3 ± 0.04 15.4 ± 0.03 5.3 ± 0.04 11.3 ± 0.04 
 0.75 3.2 ± 0.03 6.2 ± 0.1 8.1 ± 0.1 1.5 ± 0.04 5.0 ± 0.04  
 0.9 1.8 ± 0.04 4.9 ± 0.1 7.0 ± 0.1 0.9 ± 0.04 3.7 ± 0.1  
 

𝜇|𝜌

0.1 30.6 ± 0.4 49.1 ± 0.6 55.8 ± 0.7 27.8 ± 0.4 39.4 ± 0.5  
 0.2 29.9 ± 0.2 45.9 ± 0.3 51.9 ± 0.6 26.4 ± 0.02 37.5 ± 0.2  
 0.3 30.0 ± 0.7 44.0 ± 0.5 48.9 ± 0.6 25.4 ± 0.6 36.7 ± 0.7  
 0.4 27.8 ± 0.2 40.0 ± 0.3 45.2 ± 0.4 22.8 ± 0.2 33.7 ± 0.2  
 0.5 25.9 ± 0.3 37.3 ± 0.5 41.6 ± 0.4 20.5 ± 0.2 31.5 ± 0.3  
 0.7 22.9 ± 0.2 31.3 ± 0.3 34.9 ± 0.2 17.2 ± 0.2 27.1 ± 0.2  
 0.9 18.7 ± 0.05 25.4 ± 0.2 28.1 ± 0.1 13.0 ± 0.04 22.1 ± 0.1  
 

𝜇|𝛾

0.1 16.5 ± 0.2 23.8 ± 0.1 26.8 ± 0.1 11.4 ± 0.2 20.2 ± 0.2  
 0.2 24.9 ± 0.3 34.6 ± 0.3 38.3 ± 0.3 19.2 ± 0.2 29.6 ± 0.3  
 0.3 29.6 ± 0.5 42.4 ± 0.1 46.9 ± 0.1 24.4 ± 0.5 35.7 ± 0.3  
 0.4 31.9 ± 0.3 46.0 ± 0.4 51.1 ± 0.3 27.3 ± 0.2 38.7 ± 0.3  
 0.5 30.5 ± 0.3 45.3 ± 0.4 50.7 ± 0.4 26.8 ± 0.2 37.6 ± 0.4  
 0.7 34.2 ± 0.8 49.4 ± 0.7 55.3 ± 1.2 31.0 ± 0.7 41.6 ± 0.8  
 0.9 32.0 ± 0.4 49.0 ± 0.6 55.5 ± 0.3 29.0 ± 0.4 40.1 ± 0.3  
 

Attractiveness

top 0.1% 21.5 ± 0.2 31.2 ± 0.4 34.8 ± 0.3 16.0 ± 0.1 26.2 ± 0.2  
 top 1% 20.3 ± 0.2 29.6 ± 0.3 33.2 ± 0.4 15.1 ± 0.2 24.9 ± 0.2  
 top 5% 18.6 ± 0.1 28.3 ± 0.3 32.0 ± 0.3 13.5 ± 0.1 23.4 ± 0.1  
 top 10% 17.4 ± 0.2 26.6 ± 0.1 30.4 ± 0.1 12.5 ± 0.1 22.0 ± 0.1  
 last 30% 23.9 ± 0.2 34.1 ± 0.2 37.7 ± 0.2 18.3 ± 0.1 28.8 ± 0.2  
 last 60% 22.6 ± 0.3 32.0 ± 0.3 35.6 ± 0.3 17.1 ± 0.2 27.2 ± 0.3  
 

Preference

top 3 20.4 ± 0.1 30.4 ± 0.3 34.3 ± 0.3 15.4 ± 0.1 25.4 ± 0.2  
 top 5 18.3 ± 0.3 28.5 ± 0.3 32.4 ± 0.2 13.7 ± 0.2 23.3 ± 0.3  
 top 10 16.9 ± 0.1 26.7 ± 0.2 30.6 ± 0.2 12.3 ± 0.2 21.8 ± 0.1  
 top 30 14.3 ± 0.2 24.5 ± 0.3 28.5 ± 0.1 10.5 ± 0.2 19.3 ± 0.2  
 top 100 12.6 ± 0.3 22.1 ± 0.3 25.9 ± 0.3 9.2 ± 0.1 17.3 ± 0.3  
13 
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