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A B S T R A C T   

Predicting the next location of human mobility and its semantic information can support recommendations for 
location-based services and trajectory mining, such as human mobility pattern recognition and sequential 
anomaly detection. Previous studies have ignored the implicit correlation between location and spatiotemporal 
information thereby limiting the model performance in terms of location prediction accuracy. In this study, we 
propose a GEMA-BiLSTM (Geographical Embedding and Multilayer Attention -Bidirectional Long Short-Term 
Memory) model to predict the next-location in users' mobility. The model combines location and spatiotem-
poral information to extract the semantics of human mobility. The results show that the model can accurately 
predict the next location with a high accuracy of 87.63%. Compared with BiLSTM-CNN, LSTM, CNN, and 
Markov, the location prediction accuracy of the model improved by 2.28%, 9.72%, 11.53%, and 17.64%, 
respectively. In addition, the model has the highest semantic prediction accuracy (75.35%). Compared with the 
BiLSTM-CNN model, the our method improves the semantic prediction accuracy for residential and industrial 
function areas by 4.79% and 5.37%, respectively. The accuracy of location prediction for different time periods 
indicates that the next location of human activity during morning rush and evening rush hours is the most 
difficult to predict, which corresponds to the increase in human travel demand. Moreover, weekday human 
activity patterns indicate that the commercial area is still very active at night, which may be linked to nighttime 
economic policies. This study could improve the accuracy of recommendations for location-based service 
applications.   

1. Introduction 

Rapid urbanization has led to complex patterns of human mobility 
which generates challenges such as traffic congestion and imbalanced 
regional development (Cobbinah et al., 2022; Wang, Zhang, and Li, 
2022). Geographic big data, such as geotagged social media data and 
mobile phone signaling data, are commonly used to analyze and monitor 
human mobility (Liu et al., 2020). Human trajectories consist of 
temporally connected locations where people engage in activities such 

as shopping, eating, and working. The time interval between the loca-
tions is usually in minutes, hours or days (Qian et al., 2021; Tu et al., 
2017). Capturing the trends of human movement in a short period can 
assist in urban planning and management thus providing theoretical 
support for reallocating public resources (Liu et al., 2020; Tian et al., 
2021). 

Next-location prediction refers to the prediction of one step ahead 
location based on the existing historical trajectory. Although location 
prediction techniques have increasing applications in urban planning 
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and management, their adoption is still constrained by predictive per-
formance issues. Current trajectory modeling leverages only time and 
location data due to the lack of specific activity information in 
geographical big data (Xia, Hu, and Chen, 2023). However, human 
trajectories carry information regarding activity, purpose and prefer-
ences (Liu et al., 2015; Zhang et al., 2021), and their analysis enables the 
inference of the purposes of activities (Zhai et al., 2019). Fully exploiting 
the temporal and spatial characteristics of trajectories will potentially 
improve location prediction. 

Studies have identified temporal features of the trajectory, such as 
the daily patterns and longer-term weekly or seasonal patterns in human 
activity (Gonzalez, Hidalgo, and Barabasi, 2008; Liu et al., 2020). Zhao, 
Chen, Gao, et al., (2023) used workers to demonstrate the daily peri-
odicity of human mobility between home and office. Deschaintres, 
Morency, and Trépanier (2022) observed the weekly cycle of human 
mobility in 108-days origin-destination (OD) survey data. The repetitive 
and periodic activity patterns of historical trajectories can be an 
important source for location prediction (Liu et al., 2020). However, 
historical trajectories for individuals can be difficult to obtain as avail-
ability is often limited. Learning from human mobility data collections 
can also support human mobility prediction by relying on common 
human activity patterns to complement the individual's activity infor-
mation (Solomon et al., 2021). 

Researchers have made efforts at location prediction using the tem-
poral features of trajectories by employing three main location predic-
tion techniques: pattern-based, model-based, and neural network-based. 
In the pattern-based method, the frequent mobility patterns are 
extracted from the trajectory set, and then the pattern tree is built to 
predict the next location (Guo et al., 2010). However, this method is 
sensitive to the selection of parameters and requires a long time to find 
frequent patterns. 

Model-based methods, such as the probability model based on sta-
tistics, have been developed for location prediction (Bernecker, Cheng, 
Cheung, et al., 2013; Gambs, Killijian, and Del Prado Cortez, 2012; Qiao 
et al., 2014; Song, Kotz, Jain, et al., 2003). The model-based methods 
calculate transition probabilities among all locations and use dynamic 
programming to identify the sequence with the greatest probability. 
Gambs et al. (2012) used Markov chains to compute the probability of 
moving between locations based on previous visits. Qiao et al. (2014) 
improved the hidden Markov model (HMM) to capture the relevant 
parameters for real-world scenarios. However, the model-based 
methods assume trajectory independence, meaning that the current 
location is only related to previous one. This independence assumption 
limits the model's ability to predict accurately, leading to unsatisfactory 
performance (Jensen et al., 2006). 

Neural network-based methods compose overrepresentation vectors 
of locations in the trajectory for classification (Alahi et al., 2016; Bao 
et al., 2021; Solomon et al., 2021). One-hot embedding is a common 
approach to represent the location (Bao et al., 2021; Erdelić et al., 2021). 
However, it creates sparse, high-dimensional vectors that hinder neural- 
network-based methods from learning meaningful and helpful infor-
mation (Mai et al., 2022). Word embedding uses neural networks to 
learn to generate word representation vectors from contextual infor-
mation in the sentences of a corpus (Selva Birunda and Kanniga, 2021). 
To further consider the semantic information of spatial data, the word 
embedding method has been introduced into spatial data mining tasks 
such as urban function mining and geographic semantic representation 
to extract semantic information (Zhai et al., 2019; Zhang et al., 2021). In 
a trajectory, semantic information refers to the spatiotemporal transi-
tion relationship indicating the user's intent (Yao, Zhang, Huang, et al., 
2017; Zhang et al., 2021). Zhang et al. (2021) proposed a Traj2Vec 
model that embeds the context of locations in trajectories to extract 
semantic information about how people use urban space. The word- 
embedded representation vectors reflect human activity purposes, 
which are helpful to improve the performance of land-use classification. 
The word embedding method is expected to improve the performance of 

location prediction models. 
Neural network-based methods such as the recurrent neural network 

(RNN) and long short-term memory (LSTM) have been used to mine 
long- and short-term dependencies from trajectories. RNN models are 
able to consider correlations in trajectories but do not extract features in 
parallel (Alahi et al., 2016). LSTM is a derived RNN model containing 
long- and short-term memory units. LSTM can efficiently solve gradient 
boosting and explosion problems, but it can only exploit historical 
contextual information (Solomon et al., 2021). The Bi-LSTM model 
combines the forward and the backward hidden layers that can process 
historical and future contextual information (Bao et al., 2021; Graves 
and Schmidhuber, 2005). However, due to the uncertainty of human 
activities and the instability of recording devices (Xu et al., 2015), it is 
still difficult to eliminate the interference due to meaningless informa-
tion in prediction results by using Bi-LSTM only. 

Focusing on the important information in the trajectory can help 
neural-network-based methods to produce better results (Li et al., 2020). 
Useful information for location prediction focuses on important loca-
tions and corresponding spatiotemporal features, such as transportation 
centers in the morning and evening peaks and workplace locations 
during working hours. The attention mechanism assigns weights to 
highlight important contextual information for sequence problems 
(Chen et al., 2019). It has been successfully applied in text classification 
(Liu and Guo, 2019), image recognition (Li, Jin, Zhou, et al., 2020), and 
other tasks. A feedforward neural network parameterizes the attention 
mechanism and can be integrated into the training of deep neural net-
works (Miao, Luo, Zeng, et al., 2020). Since LSTM models can capture 
contextual information in trajectories, combining an attention mecha-
nism and Bi-LSTM models further improves the performance of location 
prediction. 

Functional semantics refer to human activities in urban areas, i.e., 
eating, traveling, shopping, and sleeping (Cai, Xu, Liu, et al., 2019). 
Studies have shown that the functional semantics of location can help 
explain or analyze human activity intentions, habits, and activity pref-
erences thus improving location prediction performance. For example, 
Meng et al. (2017) combined location and point of interest (POI) in-
formation within the activity unit to improve the accuracy of inferring 
the travel purpose. Temporal information about the m'ovements in the 
trajectory is also important for detecting spatiotemporal trends of 
human mobility (Zhang, Liu and Wang, 2019; Gao, 2015). For example, 
people usually move toward their residence at night and toward their 
office during the morning peak. However, the influence of different 
features on the prediction location is often ignored. For example, when 
inferring the trend of human movement at night, it is more likely to 
consider time information. This is because people's activities at night are 
fixed and have little relation to the place in the previous time period. 

In summary, both the spatiotemporal features of location and the 
long- and short-term dependencies between locations are essential for 
location prediction (Yao et al., 2017). However, most studies simply 
combine external characteristics (POI and time). Ignoring the difference 
between the spatiotemporal semantics and the previous location of 
trajectory will introduce bias into location prediction. Based on word 
embedding for geographical data and an attention mechanism, this 
study proposes a GEMA-BiLSTM model to fuse the spatiotemporal se-
mantics and context information of location to capture the active intent 
to enable location prediction. The remainder of this paper is organized 
as follows: in the methodology section, the composition of the GEMA- 
BiLSTM model and the corresponding working principle are explained 
in detail. The third section presents specific location prediction cases, 
and the last two sections discuss and summarize the model effects. This 
study can help implement urban management policy and ensure urban 
traffic stability. 

Y. Yao et al.                                                                                                                                                                                                                                     
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2. Methodology 

2.1. Overall framework 

This study proposes a location prediction framework called GEMA- 
BiLSTM that couples geographical embedding, a multilayer attention 
mechanism, and bidirectional long short-term memory. As shown in 
Fig. 1, GEMA-BiLSTM consists of four parts: the trajectory model, 
spatiotemporal feature model, attention model, and prediction model. 
The trajectory model consists of the word embedding component to 
obtain the matrix representation of the trajectory and the Bi-LSTM 
component to extract the contextual information from the trajectory 
matrix. Similarly, the spatiotemporal feature module includes a 

spatiotemporal feature embedding component to build the feature ma-
trix and a Bi-LSTM component to extract contextual information from 
the feature matrix. Next, the output of the Bi-LSTM component in the 
trajectory model and the spatiotemporal feature model are merged and 
used as the input to the attention model. The attention model includes a 
local attention layer and a global attention layer. Finally, a fully con-
nected neural network is used in the prediction model to obtain the next 
location, and the accuracy of the model results is verified. 

2.2. Embedding of geographic information 

Before location prediction, spatiotemporal data such as trajectories, 
time, and land function semantics must first be represented as vectors 

Fig. 1. GEMA-BiLSTM model framework.  
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that computers can learn and process. Specifically, the trajectory here is 
about the human activity trajectory, where each location in the trajec-
tory represents an activity anchor point. This anchor point indicates that 
the human has been in the location for some time and has performed 
some activities (Zhang et al., 2021). In this study, anchor points are 
selected on the criteria that the stay is longer than one hour. 

2.2.1. Extraction of contextual information in trajectories based on the 
word embedding model 

Human mobility is regular in urban areas (Gonzalez et al., 2008). For 
example, the next step for a weekday worker at home in the morning is 
the office, and the next location at work in the evening is the residence. 
Contextual information from the location helps to infer the intention. 
The Word2Vec model is used because the representational vector of 
locations can capture contextual semantic information. Word2Vec is one 
of the most popular models for learning word embeddings using shallow 
neural networks (Mikolov, Chen, Corrado, and Dean, 2013). The neural 
network used in Word2Vec learns the distribution of words in the corpus 
to obtain vectors representing words. When the representational vectors 
are similar in distance, the context information of the locations is 
similar. 

The CBOW (continuous bag-of-words) is the Word2Vec architecture 
used in this study to fully characterize the contextual information of 
each location in the trajectory (Mikolov et al., 2013). It infers the target 
word from the given context words (Fig. 2). When using the CBOW 
model to generate a word embedding vector, we must first build a 
training dataset. The sequence of trajectories of the k-th user input to the 
CBOW can be expressed as Uk = {X1,…, Xi,…, XM}, where Xi is the i-th 
step and M denotes the number of samples. All the users' trajectories 
form a training dataset for the CBOW model. Subsequently, we must 
build the set of locations where people have moved from the complete 
set of trajectories, with each location having a corresponding index. The 
locations are encoded using one-hot encoding, such as Xi = (xi1,xi2,xi3, 
…,xiV), where V is the total number of location sets. 

Next, we need to determine the size of the slide window c, a 
parameter that determines how much context information is embedded. 
The context of Xi in the trajectory includes {Xi− c,Xi− c+1,…,Xi− 1,Xi+1,…, 
Xi+c− 1,Xi+c}. 

Then, the CBOW model is trained to obtain the weight matrix W1, 
where W1 ∈ RV×N, N is the vector dimension after embedding. By taking 
the average of the intermediate vectors vi in the window, as shown in 
Formula (2), the output vector hi can be obtained. Multiplying the hid-
den layer output hi by the output matrix W2 in Formula (3), the vector ui 

can be obtained, where ui ∈ R1×V. 

vi = W1 • Xi (1)  

hi =
1
2c

(vi− c, vi− c+1,…, vi− 1, vi+1,…, vi+c− 1, vi+c) (2)  

ui = W2 • hi (3) 

Finally, the probability of each characteristic dimension is calculated 
through the softmax layer in Formula (4) and Formula (5). The deviation 
between the real data Xi and ui′ is calculated through the loss function in 
Formula (6). The optimal weight matrix W1 is obtained by minimizing 
loss. Each location-representing vector encoded with one-hot in the 
trajectory is transformed into an N-dimensional word vector using the 
weight matrix W1, and the trajectory is represented as an M*N matrix. 

u'
i = softmax(ui) (4)  

u'
ij =

euij

∑V

j=1
euij

(5)  

loss
(
Xi, u'

i

)
= −

∑V

j=1
Xij • ln

(
u'

ij

)

(6)  

where uij is the predicted value of the j-th location in the i-th step, and uij
' 

is the predicted probability of the j-th location in the i-th step. Xij is the 
true probability of the j-th location in the i-th step. 

2.2.2. Calculating the spatiotemporal semantic vectors of locations 
Extracting temporal information and functional semantics of land is 

essential for collecting human activity patterns (Humtsoe, 2022). 
Human trajectory records contain temporal information, represented by 
timestamps, which are integers. To obtain the spatiotemporal semantic 
vectors corresponding to the locations, we first need to compute vectors 
of length N (as mentioned in 2.2.1) to represent the temporal informa-
tion. This study performs entity embedding for time to generate time 
feature vectors. Entity embedding refers to the one-hot embedding of 
timestamps into low-dimensional vectors using a fully connected neural 
network. The next step is to compute a functional semantic vector of 
length Z, where Z is the number of POI categories. Since human activities 
are associated with land function semantics, POIs express the land 
function semantics in cities (Zhai et al., 2019). For embedded land 
function semantics, using only a single category of POI to represent the 
function of mixed land use can produce a significant bias (Sarkar and 
Chunchu, 2016). The attractiveness of each POI category is obtained 
based on the term frequency-inverse document frequency (TF-IDF) al-
gorithm. The formula for the TF-IDF is as follows: 

Wd = fw,d • log
|D|

1 + fw,D
(7)  

where w represents a type of POI, d represents a location, and fw, d rep-
resents the frequency of w in d. D represents the set of locations in 
human trajectory data. fw, D represents the frequency of w in D. The 
dimensionality of the semantic vectors is the same as the number of POI 
categories, namely, Z. 

Finally, the functional semantic vector is appended to the time in-
formation vector to form the spatiotemporal feature vector of the loca-
tion that has a vector dimension of (N + Z). Corresponding to each step 
location, the spatiotemporal feature vector is parallel-connected to 
construct the M*(N + Z) spatiotemporal semantic matrix. 

2.3. Long space-time mobile mode learning 

In location prediction problems, the current location is related to the 
past state and may be related to the future state (Chen et al., 2017). Fig. 2. The CBOW framework of the word2vec model.  
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However, the single-direction LSTM can only transmit information in 
one direction. Bi-LSTM is a combination of forward and reverse LSTM 
(Graves and Schmidhuber, 2005). Bi-LSTM can handle the long- and 
short-term dependencies of sequences effectively (Bao et al., 2021). 

Each location in the trajectory has previous and next locations, 
except for the starting and the ending locations. To extract the contex-
tual information from trajectory and spatiotemporal feature sequences, 
we apply the Bi-LSTM model in corresponding modules, comprising 
feature input and training layers. In the feature input layer before 
training, the vector of trajectory representations and the vector of 
spatiotemporal feature sequences need to be used as the input of the Bi- 
LSTM model. In the trajectory module, the representation vector of each 
location in the trajectory (detailed in Section 2.2.1) is used as input to 
the Bi-LSTM model. In the spatiotemporal feature module, the spatio-
temporal feature vector corresponding to each location in the trajectory 
is used as input to the Bi-LSTM model (detailed in Section 2.2.2). In the 
training layer, each sequence needs to be cut into some fixed-length 
segments in the neural network. The length of the sequence is set to 
M. We then use the previous (M-1) location information and the previ-
ous (M-1) spatiotemporal feature information to predict the final loca-
tion information. The last location is used to evaluate the performance of 
the model. 

2.4. Multilayer attention mechanism 

The attention mechanism is a mimetic way of observing objects in 
humans and can select key features from a large amount of information 
(Luong, Pham, and Manning, 2015). In the location prediction task, the 
attentional mechanism can assign weights to location and spatiotem-
poral features and to different human movements in the trajectory. This 
study employs a multilayer attention model consisting of local and 
global attention layers. The local attention layer fuses the output of the 
trajectory and spatiotemporal semantic models, while the global atten-
tion layer highlights the influence of location on the prediction results. 

2.4.1. Local feature fusion of spatiotemporal semantics 
Mobility transitions are governed by multiple factors (Feng, Li, & 

Zhang, 2018), such as time of day and location preferences. Considering 
the implicit correlations between these different factors, we need to 
consider their weights. This study incorporates a local attention layer to 
fuse location and spatiotemporal features. First, the hidden state vectors 
in the trajectory model are merged with the hidden state vectors in the 
spatiotemporal model. After merging, the new hidden state vector hf is 
obtained, where hf ∈ RL×2×2N, L is the sequence length, and N is the 
number of neurons at the hidden layer. Since Bi-LSTM is used in this 
study, the output hidden state vector is twice as long as the input vector. 
The length of the hidden state vector in the location model and in the 
temporal semantics are both 2 N. Then, the local attention layer is 
adopted to calculate the weights of the location and spatiotemporal 
semantic features. As shown in Formula (8), the initialized coefficient 
matrix Wl and bias term bl are used to perform linear transformation on 
the input hf, and then nonlinear transformation is realized through the 
tanh function. 

uli = VT
l tanh

(
Wl • hf + bl

)
(8) 

During the training process, the model is iterated continuously to 
optimize and update the parameters of Wl, bl and Vl

T. The softmax 
function is used to realize normalization, and the weight αli of local 
features is calculated, as shown in (9). 

αli = softmax(uli) =
exp(uli)

∑2

i=1
exp(uli)

(9) 

Finally, the fused features hAtten ∈ RL×2N at each location is obtained 
by summing all the feature vectors according to the feature weights, as 

shown in (10). 

hAtten =
∑2

i=1
αli • hfi (10)  

where αli is the influence weight at the i-th feature and hfi is the i-th 
feature vector. 

2.4.2. Global attention allocation of sequences 
Human mobility in cities has irregular transition features (Feng et al. 

2018). For example, people may visit breakfast or convenience stores in 
addition to transportation places such as bus and subway stops during 
their commute. However, these places are generally less important than 
transportation places in predicting where people will visit next. There-
fore, we need to focus on the importance of each location in predicting 
the next location. This study uses the global attention layer to explore 
each location information's impact on prediction to give the model a 
broader vision. The input of the global attention layer is the compre-
hensive feature hAttenj obtained in Section 2.4.1, and the calculation 
method is shown in (11) to (13). 

ugj = VT
g tanh

(
Wg • hAttenj + bg

)
(11)  

αgj = softmax
(
ugj

)
=

exp
(
ugj

)

∑L

j=1
exp

(
ugj

) (12)  

H =
∑T

j=1
αgj • hAttenj (13)  

where Wg and bg are the coefficient matrix and bias term in the attention 
mechanism, respectively. T represents the total number of moments, αgj 
is the influence weight of each location at the j-th moment, L is the 
length of the trajectory sequence, and H is the result. 

In the final prediction module, based on the feature vector output 
from the global attention layer, the fully connected layer and softmax 
are used to obtain the probabilities of each candidate location. The 
candidate location with the highest probability is regarded as the pre-
diction result. 

2.5. Model prediction and validation 

In addition to Markov, we chose to compare our method with the 
BiLSTM-CNN, CNN, and LSTM models, open-sourced by Bao et al., to 
prove the validity of the proposed model. The BiLSTM-CNN model 
combines LSTM with CNN, where the output of LSTM is used as the input 
of CNN, and 1D convolution with kernel sizes of 2, 3, and 5 is used in 
CNN. These models were fed with the same trajectory data after word 
embedding. The study also tested the effectiveness of multilayer atten-
tion models for location prediction. Experiments were conducted on 
GEMA-BiLSTM with no attention, only a local attention layer, and only a 
global attention layer. The original attention module's input was used 
directly in GEMA-BiLSTM without an attention layer. GEMA-BiLSTM 
had one local attention layer, and GEMA-BiLSTM had one global 
attention layer. 

The prediction performance evaluation was conducted from two 
aspects: location prediction and travel semantic prediction. To evaluate 
the location prediction performance of the model, we used the mean 
absolute error (MAE), root mean square error (RMSE), mean relative 
error (MRE) and accuracy as evaluation indicators, as shown in formulas 
(14) to (18): 

MAE =
1
n
∑n

i=1
|ΔDis(yi, ŷi) | (14)  

Y. Yao et al.                                                                                                                                                                                                                                     
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ΔDis(yi, ŷi) )

2

√

(15)  

MRE =
1
n
∑n

i=1

|ΔDis(yi, ŷi) |

Distancei
(16)  

Hit(yi, ŷi) =

{
1, |ΔDis(yi, ŷi) | ≤ γ

0, |ΔDis(yi, ŷi) |〉γ
(17)  

Accuracy =

∑n

i=1
Hit(yi, ŷi)

n
(18)  

where n is the number of trajectories, yi is the actual location of user i, ŷi 
is the predicted location of user i, and ΔDⅈs

(
yi, ŷi

)
is the spherical dis-

tance between yi and ŷi. Distancei is the sum of the moving distances of 
user i, and γ is the error threshold. Considering the range of human 
activities, γ is set to 500 m. 

Travel semantic prediction performance measures whether the pre-
dicted location matches the travel semantics of the actual location. 
Travel semantics are a category of POI that people are most likely to visit 
in the neighborhood of the travel destination (Yue, Wang, Hu, et al., 
2012, Liu, Wu, & Peng, 2022). To evaluate travel semantic prediction 
performance, we first identified the functional semantics of each land in 
the city using POI data. Then, the POI category with the highest 
attractiveness in the neighborhood of the travel destination was used as 
the travel semantic. Finally, we used the confusion matrix to assess the 
travel semantic overall accuracy. It is the proportion of correctly iden-
tified samples to the total number of samples in the matrix. 

3. Case study 

3.1. Study area 

This study selected Shenzhen city to investigate next-location pre-
diction. As shown in Fig. 3, Shenzhen has 10 administrative districts, of 
which the Nanshan, Futian, Luohu, and Yantian Districts are within the 
special economic zone. According to the 2012 Shenzhen Statistical 
Yearbook, the year-end permanent population of Shenzhen was 10.46 

million. In terms of urbanization, Shenzhen ranks among the top cities in 
China. Generally, a developed city takes 20 years of a development 
planning cycle and does not change much in urban function and struc-
ture (Liu, Li, and Yang, 2018). The human activity patterns identified in 
Shenzhen are representative. 

3.2. Study data 

The dynamic data from mobile phone users can accurately reflect 
human movement patterns (Li et al., 2019). This study collected 16.3 
million mobile phone signaling data (MPSD) tracks from a large com-
munications operator, recorded regularly in time. The number of users 
in the MPSD matched the year-end permanent population data from the 
2012 Shenzhen Statistical Yearbook (10.46 million), indicating that 
MPSD is representative of the city's population. Notably, 82.6% of 
Chinese used mobile phones in 2012 (China Digital Divide Team, 2013). 
Table 1 displays that the MPSD utilized in this study covers crucial in-
formation, including user IDs, time records, and geographical locations. 
To preserve privacy, user IDs in the dataset were assigned unknown 
numbers, and the location recorded was not the users' real-time location 
but rather the mobile base station's location. We counted the time in-
terval of continuous recording of all users and found that 70.47% of the 

Fig. 3. Remote sensing image of Shenzhen.  

Table 1 
Example of original mobile phone signaling data.  

User ID Record times Location Next record 
times 

… 

634ea*******9f8d 20,120,322 
23:06:14 

113.81** 
22.70** 

20,120,323 
00:06:15 

… 

f92ce*******96d4 20,120,322 
23:17:00 

113.92** 
22.49** 

20,120,323 
00:17:01 

… 

f3fdd*******55d0 20,120,322 
23:06:14 

113.82** 
22.70** 

20,120,323 
00:06:17 

… 

5790f*******c970 20,120,323 
10:55:40 

114.35** 
22.70** 

20,120,323 
11:26:35 

… 

8880f*******2bd9 20,120,322 
23:40:58 

113.82** 
22.70** 

20,120,323 
00:40:54 

… 

… … … … … 
8ac5b*******8593 20,120,323 

07:27:42 
113.98** 
22.57** 

20,120,323 
07:59:45 

…  
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time, the interval was between 30 and 60 min. 
According to the statistical analysis, there are 5943 base stations in 

Shenzhen (Fig. 4). We drew Voronoi diagrams based on the base station 
to obtain the Thiessen polygon and divided and counted the service area 
of Shenzhen's mobile phone base station. In addition, the performance of 
the proposed model, such as the distance error level could be compared 
by calculating the nearest neighbor distance of all Voronoi polygons. 
Approximately 92% of the base stations had a nearest neighbor at a 
distance of less than 500 m (Fig. 5). 

This study used Shenzhen's Autonavi POI data from 2012 to calculate 
spatial semantic features. Each row of POI data contained five basic 
attributes, latitude, longitude, POI category, name, and address. In this 
study, there were 15 original POI categories, including catering services, 
factories, government agencies, transportation facilities, education and 
culture institutions, residential communities, shopping stores, automo-
bile services, hotels, financial institutions, business offices, entertain-
ment venues, medical institutions, tourist attractions, and 
administrative landmarks. 

3.3. Data preprocessing and training details 

The MPSD was preprocessed in four steps: (1) Trajectories were 
selected to form datasets. We selected trajectories where there was at 
least one location in each hour. When there were multiple locations 
during a time interval, only one location was retained as the anchor 
point based on the longest dwell time. (2) Trajectory data was selected 
for word embedding. We performed location prediction at one-hour 
intervals. For effective embedding using the CBOW model, the trajec-
tories in the dataset had to correspond with each hour and contain a 
total of 24 locations. In the CBOW model, the embedding vector size was 
set to 300, and the window size c was set to 5. (3) The input data was 
then organized. The record data were organized as follows: {l1, t1, s1; l2, 
t2, s2;…; li, ti, si;…; lM, tM, sM}. li is the Thiessen polygon index in Voronoi 
diagrams for the i-th location in the users' mobile records. ti denotes the 

i-th discretization moment. si denotes the geo-semantic vector of the i-th 
location, consisting of the attractiveness of different POI categories 
within the Thiessen polygon. In the comparison model, the form of the 
training dataset was reorganized. The input data were of the form: {l1, t1; 
l2, t2;…; li, ti;…; lM, tM}. In general, the last tuple of the input data was 
used as the predicted label. 

To determine the travel semantics of the user, we reclassified the POI 
categories as suggested by Li et al. (2021). We calculated the proportion 
of different POI categories within Thiessen polygons using the TF-IDF 
algorithm. The POI category with the highest attractiveness was used 
as the functional semantics of the base station. Table 2 shows the clas-
sification rules and the proportion of corresponding functional seman-
tics. Similar to the results of the proportion of urban function 
classification (Li et al., 2021), the commercial services category is more 
distributed, followed by public services and residential areas (Fig. 6). In 
addition, we counted the proportion of visits to each functional semantic 
(Fig. 7), which may help to support the experimental results. 

3.4. Results 

3.4.1. Next-location prediction results and location prediction accuracy 
By preprocessing the original data, we obtained approximately 6 

million trajectory data points and divided the human trajectory dataset 
into training sets and test sets in a 7:3 ratio for the experiments. During 
the training process for each model, accuracy was the primary metric for 
evaluating the model's performance. 

In Table 3, compared to the traditional Markov model, better results 
are indicated in all metrics for LSTM, CNN, BiLSTM-CNN, and GEMA- 
BiLSTM. This shows the superiority of deep learning models in loca-
tion prediction. The proposed GEMA-BiLSTM model's performance was 
the best in all metrics, with an improvement in prediction accuracy of 
6.21% and 2.28% compared to the LSTM and BiLSTM-CNN models, 
respectively. Furthermore, we observed a gradual improvement in the 
performance of deep neural network models by incorporating an 

Fig. 4. Distribution of mobile base stations in Shenzhen.  
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attention module. The addition of a local attention layer and a global 
attention layer improved performance by 4.58% and 5.69%, respec-
tively, compared to the LSTM model. This improvement may be because 
the attention module can extract the most relevant contextual infor-
mation to enhance the model's performance. 

The spatial autocorrelation analysis of the prediction errors was 
performed for each polygon defined by the Voronoi diagram. Statistical 
analysis revealed that all the models exhibited significant error aggre-
gation at the 1% confidence level, which may be caused by inaccurate 
information about the user's location. Compared to other models, such 
as BiLSTM-CNN (Moran's I = 0.0245), LSTM (Moran's I = 0.0707), CNN 
(Moran's I = 0.0095), and Markov (Moran's I = 0.7106), GEMA-BiLSTM 
(Moran's I = 0.0076) showed a weaker spatial autocorrelation of errors, 
indicating its greater robustness. 

Considering the temporal characteristics of human activities, this 
study divided a day into four parts: morning rush hour (6:00–9:59), 
daytime slow hour (10:00–15.59), evening rush hour (16:00–20.59), 
and night slow hour (21:00–5:59 the next day). Based on the accuracy 
performance of each model during the four periods (Fig. 8), it is evident 

that there are significant differences in their performance. In the 
morning rush hour, the accuracy of the proposed GEMA-BiLSTM model 
(84.66%) is the highest, while the Markov model (36.25%) is the lowest. 
Meanwhile, the GEMA-BiLSTM model accuracy is significantly higher 
during all other periods. Moreover, the prediction model's performance 
is associated with the time period (Fig. 8). All models are less accurate in 
predicting the location during the evening rush hour than in other pe-
riods, indicating the diverse purposes of human activity during the 
evening rush hour. 

3.4.2. Travel semantic prediction accuracy 
To further analyze the proposed algorithm's performance, we eval-

uated its travel semantic prediction accuracy. The results show that 
GEMA-BiLSTM can effectively tap into users' travel semantics by 
combining the functional semantics of locations (Fig. 9). Overall, GEMA- 
BiLSTM outperforms the LSTM (63.27%), Markov (67.04%), CNN 
(71.70%), and BiLSTM-CNN (72.96%) models with the highest overall 
accuracy (75.35%) for identifying travel semantics. The model performs 
well in identifying various functional areas, including residential, public 
services, scenery, industrial, commercial services, and transportation 
areas. Notably, the proposed model significantly reduces the percentage 
of misclassification into diverse functional lands. For example, for 
inferring the travel semantics to residential areas, GEMA-BiLSTM 
(19.61%) has fewer errors compared to LSTM (29.96%), Markov 
(27.40%), BiLSTM-CNNN (24.20%), and CNN (22.96%) for identifying 
commercial areas. Moreover, the error rate of GEMA-BiLSTM misclas-
sification into commercial is also the lowest in all the inferences of other 
semantics. 

The study found that residential activities are frequently classified as 
commercial services, with GEMA-BiLSTM misclassifying nearly 20% of 
residential activities. This suggests that the travel characteristics of 
commercial activities are complex and have characteristics similar to 
other travel semantics. The complexity may be due to the diverse 
functions of urban land use, where commercial land is frequently com-
bined with other functions, such as entertainment, tourism, or cultural 
education (Cheng et al., 2018). 

Fig. 5. Cumulative distribution function. The rate is the cumulative frequency, which is calculated from the nearest neighbor distance of all Thiessen polygons 
in Shenzhen. 

Table 2 
POI and urban land use type mapping relationship.  

POI types Urban land use types Percentage (%) 

Residential Communities Residential 5.33% 
Medical Institutions Public Services 26.64% 
Education and Culture   
Administrative Landmarks   
Government Agencies   
Catering Services Commercial Services 49.81% 
Shopping Stores   
Automobile Services   
Hotels   
Financial Institutions   
Business Buildings   
Entertainment Venues   
Transportation facilities Transportation 2.54% 
Factories Industrial 14.40% 
Tourist Attractions Scenery 1.28%  
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3.4.3. Human activity pattern analysis 
To analyze the pattern of human activity, we counted the proportion 

of functional areas in population activities during the four periods 
(Fig. 10). The study identified the “residence-work-residence” activity 
pattern using location prediction on weekdays. The morning and eve-
ning rush hour periods had a higher proportion of transportation, as 
office workers predominantly use public transport. The proportion of 
activities in industrial, public service and scenery function areas 
increased initially until the daytime slow hour and then decreased, 
whereas the residential areas exhibited an inverse trend. These findings 
suggest that geospatial big data can reflect activity preferences, with the 
weekday activity patterns of users aligning with those of residents (Liu 

et al., 2012). 
Nighttime attraction to commercial services is a unique phenome-

non, as suggested by the changing trend in the proportion of activities 
from the daytime slow hour to the evening rush hour. The proportion of 
residential and transportation activities increased, reflecting people's 
commuting and rest needs. Furthermore, the proportion of commercial 
service areas has increased, potentially resulting from government pol-
icies promoting the development of the nighttime economy. The land for 
commercial services has launched night leisure projects to promote 
economic development (Seijas and Gelders, 2021). 

Fig. 6. Land use distribution based on base station service area.  

Fig. 7. Proportion of mobile phone users performing different activities.  
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3.4.4. Future trajectory prediction based on next step location prediction 
To apply the next-location prediction model, we implemented the 

prediction of future trajectories. In the multistep forward prediction 
process, we used an iterative prediction strategy (Guen and Thome, 
2020). Specifically, the location prediction at time i and the location 
prediction at time i + 1 were both based on the information from the 
most recent past n time steps, and the output at time i served as the input 
at time i + 1. In the study, we used the most recent twenty-three loca-
tions to predict six steps forward. 

The accuracy of the future trajectory prediction was high; the 
average prediction accuracy was 61.20% (Fig. 11). The prediction per-
formance monotonically decreased during the six forward steps, which 
was reflected by the MAE and accuracy metrics. This is due to the 
accumulation of errors caused by the inaccurate predicted location 
being implicated in the next step of location prediction. The multistep 

Table 3 
Comparison of the predicted performance.  

Model MAE 
(m) 

RMSE 
(m2) 

MRE Accuracy 
(%) 

Markov 1344.90 4157.06 0.22 69.99 
CNN 967.32 3162.40 0.14 76.10 
LSTM 833.98 2819.13 0.11 77.91 
GEMA-BiLSTM (no attention 

model) 
758.19 2698.33 0.11 79.09 

GEMA-BiLSTM (only local 
attention layer) 

677.52 2478.21 0.08 83.67 

GEMA-BiLSTM (only global 
attention layer) 

616.44 2405.71 0.07 84.78 

BiLSTM-CNN 579.17 2286.45 0.07 85.35 
GEMA-BiLSTM 498.23 2081.89 0.06 87.63  

Fig. 8. Comparison of the accuracy of different models in four periods.  

Fig. 9. Confusion matrix for semantic prediction of location by seven models. The semantic categories include: Residential (Res), Public services (Pub), Scenery 
(Sce), Industrial (Ind), Commercial services (Com), and Transportation (Tran). 
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forward prediction converged to one location using the GEMA-BiLSTM 
model. In Fig. 12, the predicted locations from T14 to T17 in the tra-
jectory of user A do not shift. Similarly, the predicted locations from T10 
to T14 obtained in the trajectory of user B do not shift. The period from 
T10 to T14 is at the night slow hour, when people are resting and the 
convergence point may be the residence. 

4. Discussion and conclusion 

The location prediction of human mobility helps uncover complex 
human behavior and travel patterns. Previous studies have revealed the 
interaction between human travel patterns and land use within cities 
(Choi, No, Park, et al., 2022; Lee, Hwang, Park, et al., 2022). However, 
the correlation between trajectories and spatio-temporal features has 
not been adequately considered in location prediction studies. This 
limits the ability of models to extract deep semantic information from 
trajectories and, consequently, impacts the application of location 

prediction. In this study, we have proposed the GEMA-BiLSTM model for 
location prediction. The main priority of the model is on extracting deep 
semantic information through encoding geolocation information such as 
MPSD and POI and fusing spatio-temporal feature using attention 
mechanisms module. 

4.1. Semantically enriched geo-embedding is effective for location 
prediction 

Our case study on Shenzhen demonstrates that geo-information 
embedding and attention mechanisms are effective. The GEMA- 
BiLSTM (no attention model) model generally outperforms both 
neural-network-based (LSTM, CNN) prediction and model-based pre-
diction models (Markov). This indicates that spatio-temporal features 
play a crucial role in revealing human activity patterns (Xu, Li, and Xia, 
2023). More, the addition of the attention module leads to a further 
improvement in the accuracy of location prediction, which may be due 

Fig. 10. Proportion trend of different functional land use types in different periods.  

Fig. 11. Multistep forward prediction results at one-hour intervals.  
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to the fact that the attention mechanism enhances the neural network 
model for mining complex dependency patterns of trajectories and 
learning of spatio-temporal features (Huang, Ma, Wang, et al., 2019). In 
general, the GEMA-BiLSTM model's accuracy improves by 17.64%, 
11.53%, 9.72%, and 2.28% compared with Markov, CNN, LSTM, and 
BiLSTM-CNN, respectively. Accurately predicting the next location in 
user activities is a major advantage of the proposed GEMA-BiLSTM 
model. 

Utilizing the attention mechanism and embedding spatio-temporal 
feature information, the GEMA-BiLSTM model effectively captures the 
travel semantics of users. Typically, commuting usually occurs at a 
specific time and place, and has a clear continuity and regularity 
(Hadachi, Pourmoradnasseri, and Khoshkhah, 2020). The GEMA- 
BiLSTM model shows significantly improved performance in identi-
fying Transportation and Residential, indicating its ability to capture 
travel features in human activities. The high percentage of misclassifi-
cation into commercial areas may be attributed to the fact that com-
mercial areas are often mixed with other functional attributes (Zhou, 
Ming, Lv, et al., 2020). To avoid biases in predicted locations caused by 
inaccurate spatial features, it is imperative to give special attention to 
mixed functional lands. 

4.2. Human activity pattern revealed by the proposed model 

From the perspective of the temporal characteristics of human 
mobility, the model highlights the complexity of human activity during 
different periods. Predicting stationary periods such as the night slow 
hours is considerably simpler compared to other periods. This is pri-
marily because individuals' behavior during these periods follows a 
more predictable pattern, allowing for more accurate prediction. At 
night, most people rest at home, and urban residents go out for fewer 
activities and travel for a single purpose (Dai et al., 2017). These find-
ings reinforce the importance of considering temporal characteristics 
when modeling human mobility. 

Through travel pattern analysis and multi-step forward prediction, 
governments can develop strategies for effectively managing cities. 
During the working day, in addition to residential areas, transportation 
and workplaces, governments also need to focus on the allocation of 
public transport resources in commercial areas. This is because unusual 

activity patterns during evening rush hour periods, especially with 
increased commercial services. The diverse patterns of movement are 
related to the development of the nighttime economy (Seijas and 
Gelders, 2021). By collecting multistep forward location data of indi-
vidual users, we can complete the flow assessments based on the number 
of individuals within a statistical measurement unit (Huang, Ling, Wang, 
et al., 2018). Since multi-step forward predictions eventually stop at one 
place which typically denotes long-stay locations such as residential 
areas or workplaces, researchers need to be concerned that the reli-
ability of urban travel demand assessments also decreases. 

While the performance of our model can be satisfactory, further 
research is needed to consider additional factors such as weekends and 
holidays. Human mobility is determined by geographical and socio- 
economic factors (Gao, Liu, Wang, et al., 2013). Abitbol and Morales 
(2021) have shown that different income or educational levels affect the 
behavior of urban residents. We will incorporate this human charac-
teristics data to improve the prediction accuracy in our future work. 
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Fig. 12. The figure shows the predicted future trajectory prediction results for user A and user B. To show the trajectory for convenience, we give an example of 
multistep location prediction using the recent six locations with a two–hour interval. The blue text indicates the period to be predicted, and the orange text indicates 
the historical period used for the first step of the multistep prediction. T3 denotes the period from 4:00 am–6:00 am, and so on until T17 which denotes the period 
from 8:00 am–10 am of the next day. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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