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ABSTRACT
Urban logistics is vital to the development and operation of cities,
and its optimization is highly beneficial to economic growth. The
increasing customer needs and the complexity of urban systems
are two challenges for current logistics optimization. However, lit-
tle research considers both, failing to balance efficiency and cost.
In this study, we propose a hybrid sparrow search algorithm (SA-
SSA) by combining the sparrow search algorithm with fast com-
putational speed and the simulated annealing algorithm with the
ability to get the global optimum solution. Wuhan city was
selected for logistics optimization experiments. The results show
that the SA-SSA can optimize large-scale urban logistics with
guaranteed efficiency and solution quality. Compared with simu-
lated annealing, sparrow search, and genetic algorithm, the cost
of SA-SSA was reduced by 17.12, 18.62, and 14.72%, respectively.
Although the cost of SS-SSA was 11.50% higher than the ant col-
ony algorithm, its computation time was reduced by 99.06%. In
addition, the simulation experiments were conducted to explore
the impact of spatial elements on the algorithm performance. The
SA-SSA can provide high-quality solutions with high efficiency,
considering the constraints of many customers and complex road
networks. It can support realizing the scientific scheduling of dis-
tribution vehicles by logistics enterprises.
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1. Introduction

Large-scale urban logistics and distribution, such as garbage collection (Gemma et al.
2016), and courier services (Martin et al. 2021), refer to the delivery of large volumes
of goods that serve the large metropolitan area. It relies on the city’s complex road
network and is essential for people’s lives (Kim et al. 2015, Groß et al. 2020). With the
rapid expansion of cities and population, especially in developing countries such as
China, the role of the logistics industry in economic development is increasingly
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essential (Cattaruzza et al. 2017, Tu et al. 2017). However, the fast-growing urban
population is increasing the demand for logistics services in recent years, logistics effi-
ciency has been challenged, which also burdens urban transport networks more
(Bergmann et al. 2020). Optimizing large-scale logistics distribution routes and reduc-
ing costs under the existing urban transportation network has become an essential
task.

The growing demand for distribution and the highly complex road network in large
cities are the main challenges of city logistics. First, large-scale urban logistics tasks
require service to thousands of customers with heavy distribution tasks and high time
pressure (Laporte 2009). Therefore, efficient heuristic algorithms are needed to obtain
high-quality vehicle path solutions (Wang et al. 2021). Second, the urban traffic net-
work is a complex spatial network that contains topological and spatial information
about the relevant road sections (Yao et al. 2018). However, current research rarely
considers both the demand for large-scale urban distribution and highly complex road
networks, leading to a poor balance between optimization performance and computa-
tional efficiency (Hill and Benton 1992, Janic 2007).

From the perspective of Geographical Information Science (GIS), logistics optimiza-
tion is a pathfinding problem under complex spatial constraints. The carrier of logistics
distribution is a traffic network constrained by node complexity, road features, net-
work efficiency and other spatial elements (Nasiri 2014, Shen 2020, Hina et al. 2020).
From the individual scale of customer points, in a complex urban network, the accessi-
bility of customers relative to the warehouse will affect the efficiency of logistics distri-
bution. From the local scale, the complexity and connectivity of the road network in a
specific area will affect the logistics distribution. In addition, the urban structure of
mega-cities often has considerable spatial heterogeneity, which also inevitably affects
the performance of logistics distribution tasks in regions. These spatial characteristics
present challenges to logistics optimization algorithms.

Scholars in the GIS domain have developed a series of pathfinding algorithms for
logistics optimization based on the shortest path problem (Li et al. 2015, Liu et al.
2018, Shirabe 2014, Vanhove and Fack 2012, Zeng and Church 2009). Currently, most
logistics optimization studies consider 20–100 customer points, and some scholars
define the logistics task with 200–500 customers as a large-scale optimization problem
(Zachariadis and Kiranoudis 2010, Zhou et al. 2018). With the development of the city,
the logistics needs of the city far exceed the size of 500 customers, and some studies
indicate that urban logistics optimization is more practical with more than 1,000 cus-
tomers (Dong et al. 2021). In addition, most existing research is based on simulated
data through Euclidean distances to evaluate logistics optimization algorithms. In prac-
tice, the urban traffic network is a carrier for logistics transport. The traffic network’s
spatial structure transformation and speed limits can significantly impact logistics
transport. Therefore, to meet urban logistics needs, conducting effective and efficient
optimization to consider both factors is essential in current urban logistics.

Large-scale urban logistics usually transfer and distribute goods from multiple ware-
houses (Kim et al. 2015) to meet customers’ needs at different locations. Therefore,
logistics distribution is usually modeled as a multi- depot vehicle routing problem
(MDVRP) (Cattaruzza et al. 2017). In this study, we choose the most common logistics
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distribution optimization scenario in cities: multi- depot, delivery vehicles with capacity
constraints, and delivery vehicles return to the warehouse after the distribution tasks.
The delivery vehicles are required to traverse all customer points, and the optimization
objective is the minimum driving distance. Such scenarios include express delivery,
garbage collection, etc. In the multi-warehouse problem, there are more complex
space constraints. First, a reasonable distribution range for each warehouse has to be
considered, and second, the distribution path from the warehouse has to be opti-
mized. We proposed a hybrid sparrow search algorithm to solve large-scale urban
logistics optimization problems by combining a sparrow search algorithm (SSA) and a
simulated annealing algorithm (SA). The SSA aimed to obtain the solution efficiently.
To avoid fall into local optimum, the SA was used to improve the quality of the solu-
tion. The proposed algorithm was applied to the logistics optimizaiton in Wuhan city
and was compared with the other classical heuristic algorithms.

The remainder of this paper is structured as follows: Section 2 introduces the
related works of logistics optimization. Section 3 describes the study area and data
used in this study. Section 4 covers the definition and derivation of the proposed SA-
SSA. Section 5 presents the results of logistics optimization in the study area. Findings
and contributions are discussed in Section 6, and conclusions are summarized in
Section 7.

2. Related work

2.1. Logistics optimization problem definition and topological representation

Logistics optimization, as a classical pathfinding task under spatial constraints, is one
of the essential applications of GIS. It refers to the supply of goods from one or more
warehouses to serve multiple spatially discrete customers with different needs. It
requires quickly choosing the optimal distribution path for many clients, which can
boost logistics companies’ economic efficiency and customer satisfaction. Spatial ele-
ments are the main components of the optimization objective and problem construc-
tion. The optimization problem’s basic elements, such as warehouses, vehicles, and
customers, can be modelled as spatial objects, and the distribution routes are based
on the urban road network.

According to the number of warehouses in the vehicle path problem, the logistics
optimization problem can be divided into single-depot vehicle routing problems and
multi-depot vehicle routing problems (Han and Wang 2018, Gayialis et al. 2019, Wang
et al. 2020). The single-depot vehicle routing problem includes only one warehouse,
and all vehicles start from the same warehouse to serve the customer point (Chan
et al. 2002, Rahim et al. 2016). Urban logistics path optimization requires the consider-
ation of multiple warehouses and many customers. The multi-depot vehicle routing
problem is more in line with application scenarios, such as logistics distribution and
garbage collection (Shen et al. 2021, Nozari et al. 2022). Multiple warehouses serve the
customer point at the same time. Therefore, the distribution vehicles need to choose
the departure warehouse reasonably for efficient service of the customer point.
However, since MDVRP is an NP-hard problem (Laporte 2009), it is challenging to
obtain high-quality solutions, and it is challenging to construct an efficient algorithm.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 3



In the field of GIS, the topological representation of road networks is an essential
topic for logistics optimization (Liu et al. 2018). The most commonly used method
describes the road network and customers as a graph consisting of nodes and edges.
Some studies express streets as a node of the graph, and two streets are considered to
have connected edges between them if they have proximity (Jiang and Claramunt 2004,
Jiang and Liu 2009). Such street-street topologies take into account the complexity of
the topology. However, this approach does not provide the most realistic description of
the logistics distribution process in a traffic network, where drivers’ wayfinding is usually
based on road junctions or customer locations. Therefore, in GIS studies, the optimal
road network representation for path planning and logistics optimization is expressing
road junctions or customer points as nodes and edges as road segments between two
nodes. It can maximize the topological information of the road network and thus can
realistically simulate the logistics planning in Spatial constraints.

2.2. Logistics optimization algorithm

A range of urban logistics optimization algorithms has been developed to solve large-
scale urban logistics optimization problems. Common methods applied in vehicle
route planning can be classified into exact and approximate solution methods accord-
ing to the strategy of solving. Exact algorithms were widely used in early logistics opti-
mization studies (Eilon et al. 1974, Toth and Vigo 2002, Shimizu et al. 2020). For
example, Laporte and Nobert proposed branch delimitation algorithms to serve 25
customer points for delivery (Laporte 1984). The exact algorithm continued to evolve,
and the number of customers that could be satisfied was expanded to 80 (Bettinelli
et al. 2011, Laporte et al. 1988). However, the computation time also increases expo-
nentially with the increase in distribution size (Salman et al. 2020). In urban logistics
tasks with thousands of customers (Crainic et al. 2009), the exact algorithm cannot
find the optimal solution in a limited time. Hence, it failed to meet the increasing
need for urban logistics (Toth and Vigo 2002, Tu et al. 2017). The exact methods can
get the full optimal solution, but it is difficult to apply in practical scenarios (Dasdemir
et al. 2022).

Approximate solution methods are developed to conduct the logistics optimization
task in real-world problems. They include reinforcement learning and heuristic algo-
rithms. In reinforcement learning-based logistics and distribution optimization, the
model is trained with a reward mechanism that enables high-quality urban logistics
and distribution solutions (Li et al. 2017, Lu and Gzara 2019). For example, the Q-learn-
ing algorithm (Watkins and Dayan 1992) and the DQN algorithm (Mnih et al. 2013)
optimize urban logistics. Reinforcement learning has the ability of autonomous learn-
ing and decision-making and can handle the uncertainty of environmental changes in
the face of complex, large scale vehicle path planning scenarios (Arulkumaran et al.
2017, Phiboonbanakit et al. 2021). However, reinforcement learning-based methods
are time-consuming, and the model is challenging to be converged. For urban logis-
tics optimization problems with complex road networks and many user requirements,
reinforcement learning still lacks the capability for large-scale engineering applications.
In addition, the exploration process of reinforcement learning has an unstable
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scenario, which can lead to a very time-consuming convergence and does not apply
to the solution of real VRP problems.

Compared to exact algorithms and reinforcement learning, heuristic algorithms
have a proven theoretical basis and can converge quickly to obtain high-quality solu-
tions in an efficient time. The proposal of heuristic algorithms offers opportunities for
the rapid implementation of large-scale logistics route optimization (Mester et al.
2007, Wang and Chen 2012, Mouthuy et al. 2015).

Heuristics models can be classified as local search methods and intelligent search
methods (Tu et al. 2015). Local search heuristics use a spatial domain structure by tra-
versing the domain of the current solution and transferring to a better domain solu-
tion until the termination condition is satisfied. The simulated annealing algorithm
(SA) (Hwang 1988, Wang et al. 2022), a representative of local search heuristics, simu-
lates the principle of annealing of solid combustibles and has a complete theoretical
basis. As a result, the algorithm is widely used in urban logistics optimization.
However, the SA strongly depends on the quality of the initial solution, and its urban
logistics optimization results are difficult to converge. To sum up, more efficient opti-
mization methods must be explored to improve the efficiency of heuristic algorithms
in large-scale (e.g., 1000 customers) urban logistics distribution.

Intelligent search heuristic algorithms simulate the behavior of organisms in nature
and design intelligent search rules to improve the quality of solutions using group
search continuously. Among them, ant colony algorithms (ACO) (Ouyang and Zhou
2011, Qin et al. 2021) and genetic algorithms (GA) (Imani and Ghoreishi 2021, Mester
and Br€aysy 2005) are representatives of intelligent search heuristics. ACO are based on
the idea of ants searching for food and determining the shortest path by staying on the
pheromone on the path. For example, Lin et al. used an ACO to optimize the logistics
distribution of a tram (electri vehicle) to ensure that the tram had sufficient power to
complete its service to customers (Shi et al. 2022). GA mimic biological evolution in
nature and optimize urban logistics through mechanisms such as selection and muta-
tion. For example, Abolfazl et al. used genetic algorithms to optimize the distribution of
medical items in the city of Tehran (Aliakbari et al. 2022). The study shows that swarm
intelligence optimization algorithms can ensure the quality and efficiency of logistics
optimization in urban logistics. However, as the size of urban customers increases, the
optimization quality and efficiency of ACO and GA show a significant decline, making it
difficult to meet the actual needs of existing cities for logistics optimization.

As a new intelligent search heuristic algorithm, the SSA provides opportunities for
solving urban logistics distribution path optimization (Xue and Shen 2020). The algo-
rithm simulates the foraging and warning behaviors of sparrows. It has the characteris-
tics of fast convergence, strong optimization ability, and short operation time
compared with the classical heuristic search algorithm (Ouyang et al. 2021). Due to its
few control parameters and easy implementation, SSA has been applied to practical
engineering applications such as power management of hybrid renewable energy
sources (HRES), sustainable energy system optimization, and unmanned aerial vehicle
route planning (Kumaravel and Ponnusamy 2020, Liu and Rodriguez 2021, Liu et al.
2021). However, the SSA is updated by approaching the optimal forward position and
approaching the origin, which leads the algorithm to fall into local optimal solution.
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Whether the SSA can be applied to large-scale urban logistics path optimization is
unknown. Improving the SSA while considering route optimization and computational
time to solve urban logistics path optimization problems is of great significance.

3. Study area and data description

Wuhan has about 8,500 square kilometers and more than 11 million population by
the end of 2019. The built-up area of Wuhan city has a ring and radial road system,
with the urban motorway, trunk road, arterial road, secondary road, and tertiary road
as the main skeleton. According to the Wuhan City Open Data Development Platform
(http://english.wuhan.gov.cn/), the total mileage of roads in Wuhan has reached
12,000 kilometers, with a road density of 149.5 kilometers per 100 square kilometers.
Because of the unique geographical environment, Wuhan has many bridges across the
Yangtze River, increasing the road network complexity. According to the Wuhan City
Open Data Development Platform (http://english.wuhan.gov.cn/), Wuhan’s Gross
Domestic Product (GDP) exceeds RMB 150 billion. The logistics industry, an essential
part of Wuhan’s tertiary industry, completed 636 million tons of freight in 2020.
Among them, the volume of road cargo transportation has reached 317 million tons,
topping all modes of transportation. Due to the complex road network and massive
cargo transportation demand, Wuhan city is an ideal place to study the optimization
of urban logistics distribution paths.

Logistics data are the main datasets used in this study (Figure 1). We obtained
a logistics company’s customer location and warehouse data from Gaode Map

Figure 1. Logistics centres, customers and road network data in the study areas.
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(https://lbs.amap.com/). One thousand customer points and four warehouses were ran-
domly selected. In addition to the location information, the customer points also con-
tain the delivery quantity data shown in Table 1, which is a random value in the 1–
100kg interval. In addition, we obtained vehicle condition data from the logistics com-
pany, including the maximum load of the vehicles.

The road network data was obtained from OpenStreetMap (OSM) (http://www.
openstreetmap.org). OSM is an open-source mapping website that provides free and
easily accessible digital map data (Pourabdollah et al. 2013). The quality of data is cru-
cial to logistics distribution which ensures the accuracy of the distribution route for
the logistics model. The OSM data provides spatial data with high quality by evaluat-
ing its positional and attribute accuracy, completeness, and consistency (Haklay 2010).
The accuracy and reliability of OSM data for characterizing Wuhan’s urban transporta-
tion network have been verified (Wang et al. 2013). Wuhan city’s road network data
contains 81,711 road segments and related attributes, such as road latitude and longi-
tude and road type descriptions. In this study, the roads were classified into four
classes based on the type description information from OSM data: motorway, trunk
road, arterial road, secondary road, and tertiary road (Figure 1).

4. Methodology

In this study, a hybrid heuristic algorithm was proposed, combing a SSA and a simu-
lated annealing algorithm. We constructed an urban logistics optimization scenario and
researched logistics route optimization using road network and logistics data. This
study consists of four main parts (Figure 2): (1) Scene modeling for multi-depot logistics
optimization. (2) A SA-SSA was used to conduct the path optimization to solve the
multi-depot vehicle routing problem. (3) The optimization results were compared and
analyzed with other classical heuristic algorithms to verify the effectiveness and reliability
of the SA-SSA. (4) Three sets of simulation experiments at different spatial scales were
conducted to explore the impact of spatial elements on logistics optimization algorithms.

4.1. Scene modeling for multi-depot logistics optimization

In the MDVRP, logistics centers, customers, and transportation networks can be repre-
sented by a weighted graph G N, E,Wð Þ: The vertex N ¼ fn1, n2, n3:::, nLg is defined as
a set of logistics centers fn1, n2, n3:::, nlg and customers fnlþ1, nlþ2, nlþ3:::, nLg: The E ¼
fe1, e2, e3:::, erg is the set of roads in the traffic network. The W ¼
fw1�1,w1�2,w1�3:::,wi�jg is represent the shortest weight. The wi�j is the set of roads in ni

Table 1. Location coordinates of demand points and delivery quantity.
Sequence Longitude Latitude Delivery quantity/kg

1 114.06231 30.40521 15
2 114.13948 30.48460 30
3 114.38444 30.46892 45
4 114.30151 30.46185 30
5 114.39554 30.38778 25
6 114.25430 30.58867 30
… … … …
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and nj: In the paper, the roads in the Wuhan city are divided into five categories:
motorway, trunk road, secondary road, tertiary road, and arterial road, referring to the
description of data, and the Urban Road Engineering Design Specification (2016 ver-
sion). The average speed S0 of each road class was regarded as the road attribute. The
travel time (tr ¼ dr

sr
) of each road was calculated by the distance and speed of the

road. The shortest path wi�j is calculated by the travel time.
To clarify urban logistics distribution, we further explain the MDVRP model. The

logistics vehicles are all the same type and have a maximum capacity C and travel dis-
tance D in the paper. The logistics vehicle loads goods and depart in the logistics
warehouse, then the vehicle delivers the goods in the city road network. The Formula
(1) specify the logistics optimization:

Min F xð Þ ¼
X
i2N

X
j2N

X
k2K

wi�j�kxi�j�k i 6¼ j (1)

Where the K reprensets the set of vehicle, the wi�j�k reprensets the cost from i and j
by vehicle k: If vehicle k departs from point i and arrive to j, the xi�j�k ¼ 1:
Otherwise xi�j�k ¼ 0:

The constraint conditions are shown in Formula (2)–Formula (6):

� A customer point can only be served once by one vehicle:X
j2N

X
k2K

xi�j�k ¼ 1, i 6¼ j, j�fnlþ1, nlþ2, nlþ3:::, nLg (2)

Figure 2. The workflow of multi-depot urban logistics optimization.
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� The vehicle departures and retures from the same logistics warehouse:X
i2N

X
a2N

xi�a�k �
X
j2N

X
b2N

xi�j�k ¼ 0, i 6¼ j, i j�fn1, :::, nlg (3)

� The total demands (q) of customers does not exceed the maximum load capacity
C : X

i2N
qixi�k � C (4)

Where the qi reprensets that quantity demanded for customer i:
� The total vehicle distribution path distance does not exceed the maximum

vehicle travel distance D : X
i2N

X
j2N

dixi�k � D, i 6¼ j (5)

Where the di�j reprensets that travel distance from customer i to customer j:
� Each vehicle can only complete one delivery service. In this study, the delivery ser-

vice refers to the task that starts from one warehouse to complete a full distribu-
tion and then returns to the same warehouse:X

k2K
xi�k ¼ 1 (6)

4.2. Hybrid sparrow search algorithm for large-scale logistics optimization

In order to solve the large-scale urban logistics distribution problem, this paper pro-
poses a hybrid sparrow search algorithm by combining the sparrow search algorithm
and the simulated annealing algorithm. By simulating the foraging behavior of a spar-
row population, the SSA algorithm classifies sparrows into three types of intelligence:
discoverers, followers, and scouters. In urban logistics optimization, the discoverer pro-
vides an optimization direction for urban logistics optimization, while the follower con-
tinues to explore the global optimum in the optimization direction. When the
discoverer and the follower fall into a local optimum in that optimization direction, it
is difficult to improve the urban logistics optimization solution. The early-warning
scouter sends a timely message to guide the discoverer to open a new optimization
direction to explore the global optimal solution.

Compared to other population intelligence optimization algorithms, the discoverer-
follower-scouter mechanism of the SSA improves the local search capability and has
significant advantages in terms of convergence speed, search accuracy and stability.
However, the above features of the sparrow search algorithm also reduce its global
exploration capability. Therefore, this paper introduces the SA into the SSA, expecting
to borrow the probabilistic sudden jump idea of SA to accept poor solutions with a
certain probability, thus improving the global exploration ability.

The process is divided into two steps in the hybrid sparrow search algorithm for
logistics distribution paths (Table 2): First, the SSA optimizes the logistics paths and
obtains the initial optimal solution. Second, the initial optimal solution obtained by
the SSA is perturbed by the SA. This approach is expected to help the algorithm jump
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out of the local optimum to get efficient and quality logistics distribution path
planning.

4.2.1. Initial solution solving based on the sparrow search algorithm
The logistics optimization problem can be understood as a rational ordering of the
access order of customer points. In the logistics optimization algorithm based on the
sparrow search algorithm proposed in this study, the access weights of K sparrows to
all distribution points form a matrix, and the distribution vehicles will serve the distri-
bution points in the order of weight. Therefore, logistics optimization aims to obtain a
reasonable access weight matrix for proper distribution efficiency and quality. The
access weight matrix is as follows:

x1, 1 x1, 2 � � � x1, j � � � x1, d
x2, 1 x2, 2 � � � x2, j � � � x2, d
..
. ..

. . .
. ..

. . .
. ..

.

xi, 1 xi, 2 � � � xi, j � � � xi, d
..
. ..

. . .
. ..

. . .
. ..

.

xK , 1 xK , 2 � � � xK , j � � � xK , d

2
6666666664

3
7777777775

(7)

where d denotes the dimensionality of the problem variable to be optimized, i.e. the
logistics distribution points. xi� denotes the solution of the i th intelligence, i.e. the
city logistics distribution solution. xi, j denotes the weight of the i th intelligence at
the j th customer point, the higher the weight, the higher the probability of access.
The K intelligences are classified according to the optimization objective: discoverers,
followers and early warners. The dimensional characteristics of each type of intelligent
body are updated according to the following formula.

Table 2. SA-SSA algorithm operations.
The hybrid sparrow search algorithm

Step 1: Initialize corresponding parameters:
#Set the number of maximum iterations, the number of producers, the number of sparrows who perceive
the danger, the alarm value, and the number of sparrows.
#Set the Correlation coefficient of the simulated annealing algorithm
#Rmax: the maximum iterations, PD: the number of producers, SD: the number of sparrows who perceive
the danger, and R2: the alarm value.
Step 2: Randomly generate the initial solution.

for i¼ 1: Rmax
Step 3: Update discover location by Formula (8); Update follower location by Formula (9)
Step 4: Randomly select the scouter and update the location by Formula (10)
Step 5: Calculate the objective function and select the best individual for perturbation operation.
Step 6: Increase perturbation for the best individual.

#Simulated annealing algorithm
for j¼ 1:Gmax

Step 6: Creating neighbourhood solution: Domain solutions are created based on exchange operator,
reversal operator and insertion operator.
Step 7: Accepting the critical domain solution by Formula (11)
Step 8: Update the best individual.

Step 9: Find the optimal solutions.
End
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The weight update formula for the discoverer is:

xtþ1
i, d ¼ xti, d � exp

�i
a�itermax

� �
, R2 < ST

xti, d þ Q, R2 � ST

8><
>: (8)

where xtþ1
i, d is the d-dimensional position of the i-th individual in the t-th iteration, a

is a random number in the interval (0, 1], and Q is a random number that conforms to
the standard normal distribution. R2 is a random number in the interval [0,1], and ST
is a warning value in the interval [0.5,1.0].

For followers, the position update formula is as follows.：

xtþ1
i, d ¼

Q � exp xwt
i, d � xti, d

a�itermax

 !
, i � n=2

xbti, d þ
1
D

XD
d¼1

ðrand �1, 1f g�ðjxbti, d � xti, djÞÞ, R2 < ST

8>>>>><
>>>>>:

(9)

where xw is the worst position of the sparrow in the current population and xb is the
best position of the sparrow in the current population.

The equation for updating the location of the scouters is as follows.

xtþ1
i, d ¼

xbti, d þ b�ðxti, d � xbti, dÞ, fi 6¼ fg

xti, d þ K
xti, d � xwt

i, d

jfi � fW j þ e

 !
, fi ¼ fg

8>><
>>: (10)

where b is the random number conforming to the standard normal distribution, K is
the random number in the interval [�1,1], e is the smaller number, and fW is the fit-
ness value of the worst-position sparrow.

4.2.2. Optimal solution update based on simulated annealing algorithm
In order to avoid the sparrow search algorithm falling into a local optimum and improve
the optimization quality for large-scale urban logistics distribution, this paper introduces
a simulated annealing algorithm. The idea of this algorithm is inspired by the principle
of simulated annealing of solid combustibles, which is essentially a probability-based
stochastic algorithm. Therefore, the simulated annealing algorithm can enable the spar-
row search algorithm to jump out of the local optimum with a certain probability.

In the simulated annealing algorithm, F xð Þ is the optimization objective, xbest is the
current optimal solution obtained by the sparrow search algorithm. During the itera-
tive solution process, the algorithm perturbs the current solution xold randomly, result-
ing in a new solution xnew: if F1 xoldð Þ � F1 xnewð Þ, then the new solution x_new will
overwrite the old solution xold: Otherwise, the poor solution xnew is chosen to be
accepted with a certain probability p, which is defined by the Metropolis criterion:

p ¼ pexp � F1 xnewð Þ � F1 xoldð Þ
pkT

� �
(11)

where k is indicated as Boltzmann, in this study, indicates the number of iterations. T
is the current temperature value, which will gradually decrease during the
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optimizaiton process. Its temperature difference represents the difference between the
new and old solutions. In this study, T controls the rate at which the model
converges.

4.3. Model evaluation

In order to demonstrate the effectiveness of the proposed SA-SSA, a series of model
validations and comparisons were carried out. First, we carried out logistics optimiza-
tion experiments in the study area using SA-SSA, calculated the total distance and
time of the optimized paths, and compared them with each other and with classical
algorithms. The four selected algorithms are SA, SSA, GA, and ACO. In addition, we
selected several typical paths and analyzed the rationality of the optimization results
of the four methods.

Second, we analyze the rationality of the spatial distribution of the distribution
paths in two different scenarios. The spatial statistics of the logistics distribution paths
obtained using the SA-SSA were carried out in two cases, considering road class and
not considering road class. Third, a sensitivity analysis of the parameters of the SA-SSA
is carried out to validate the model’s robustness.

4.4. Simulation experiment

Logistics optimization is an optimization problem under complex spatial constraints. It
is important to explore how spatial characteristics affect algorithm performance to
understand the mechanism of optimization algorithms. It also helps us to use GIS for
logistics optimization under more complex spatial constraints in further research. In
this study, we compute spatial features at three different scales for customer points.
By grouping the logistics customer points according to the spatial features and then
optimizing them separately using the proposed SA-SSA, we explore how the spatial
features affect the performance of the algorithm.

4.4.1. Individual-scale simulation
The individual-scale simulation experiments are conducted to analyze the performance
of logistics optimization algorithms from the perspective of spatial characteristics of an
individual customer point. The network efficiency (NE) from the warehouse to the cus-
tomer point is important for logistics planning tasks. It is the reciprocal of the shortest
path distance between nodes (Latora and Marchiori 2001), which characterizes how easy
it is for a warehouse to serve a customer point. In this study, we calculate the average
network efficiency of each customer point to four warehouses and analyze the perform-
ance of SA-SSA for serving customer groups with different levels of network efficiency.
The average network efficiency for a customer point is calculated as follows:

NE ¼
Xm
1

1
SDi

(12)

Where SDi is the shortest distance from customer point to warehouse i, and m is
the number of warehouses.
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We calculated the average network efficiency of 1000 customer points and then
divided them equally into two subgroups (low network efficiency group and high net-
work efficiency group) according to the value of network efficiency. After that, for
each subgroup, low-density (100 points) and high-density (300 points) sampling was
performed twice, and then logistics optimization was performed using SA, SSA, and
SA-SSA.

4.4.2. Local-scale simulation experiment
The local-scale simulation experiment evaluates the optimization algorithm from the
local spatial structure of the location of the customer points. The logistics optimization
task is determining the order of access to each customer point. The ease with which a
customer point can be served depends not only on its location from the warehouse
but also on its ease of access to other customer points. If a customer point is relatively
close to all other customer points, it is more convenient to be served by a logistics
vehicle. In this way, the overall distance of logistics is shorter.

In this study, we choose closeness centrality to characterize the proximity between
other customer points of a customer point in the urban road network (Okamoto et al.
2008). For a specific node, closeness centrality is calculated as the average length of
the shortest path from this node to all other nodes. Similar to the simulation experi-
ment of network efficiency, we calculated the closeness centrality of 1000 customer
points and then divided them equally into two subgroups. After that, for each group-
ing, low-density (100 points) and high-density (300 points) sampling was performed
twice, and then logistics optimization was performed using SA, SSA, and SA-SSA.

4.4.3. Global-scale simulation
The global scale simulation experiment evaluates the algorithm from the perspective
of urban structure. The urban road network and customers have a spatially heteroge-
neous pattern. For example, customers in some areas show spatial aggregation, while
others are sparse. In addition, the spatial structure of the urban road network affects
the service capability and efficiency of logistics in different areas.

To explore the performance of SA-SSA in serving regions with different spatial char-
acteristics, we conducted a network-based spectral clustering of the 1000 customer
points in the study area to obtain clusters with different spatial patterns (Ng et al.
2001). Then logistics optimization experiments are conducted separately for customer
points within each cluster to evaluate the algorithm’s performance.

5. Result

5.1. Model evaluation result

To verify the effectiveness of the proposed hybrid algorithm, we constructed an urban
logistics distribution scenario based on four logistics warehouses, 1000 customer
points, and road network data in Wuhan city. The proposed SA-SSA, SA, SSA, GA, and
ACO were used for logistics path optimization. We conducted a comparative analysis
of the optimization results of each algorithm. Each algorithm was run 30 times, and
the average total path length, standard deviation, and calculation time were recorded
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for model comparison and sensitivity analysis. After several experiments and compari-
sons of the optimization result, the maximum number of iterations itermax of the SSA-
SA algorithm was set to 1000, the sparrow population K was 50, and the warning
value ST was 0.6. In addition, the proportion of discoverer PD was 0.7, the initial tem-
perature T was 100, and the cooling speed alpha was 0.97.

Table 3 shows the optimization results for five algorithms. The proposed SSA-SA
algorithm had the highest solution quality regarding the shortest path for logistics dis-
tribution. Compared with the SSA and GA, the minimum shipping distance of the SSA-
SA algorithm was reduced by 17.12 and 14.72%, respectively. It is noteworthy that the
minimum shipping distance of the SSA-SA algorithm was decreased by 18.62% com-
pared to the original SSA. This indicates that the introduction of SA improves the glo-
bal search capability of the SSA algorithm. In addition, the shortest shipping distance
of the ACO outperformed the hybrid SSA by 11.50% compared to the SSA-SA algo-
rithm due to its strong global search capability.

The proposed SSA-SA algorithm had high computational efficiency, optimizing
logistics routes for 1000 customer instances in 804.61s on average. Its computation
time was not significantly different from the SSA, SA and GA. However, it had a con-
siderably shorter computation time (99.06%) than the ACO. In addition, the SSA-SA
algorithm had the smallest standard deviation (91.74 km) of the average minimum
shipping distance and the smaller standard deviation of the average optimization time
(Table 3). This indicates that SSA-SA had better optimization performance and solving
stability than other algorithms. In summary, the proposed algorithm can consider both
shipping cost and computation time in the real logistics scenarios, better meeting the
logistics need of large urban with complex systems.

To better demonstrate the advantages of SSA-SA, we have selected several typical
distribution paths for case analysis. Each complete distribution route starts from a
warehouse, serves some customer points, and returns to the same warehouse. The
paths planned by SSA-SA tend to be high-speed roads for delivery to more dense cus-
tomer points in the city centre. For example, the vehicle selects the Dai Huang motor-
way (expressway) from the distribution centre (Figure 3(A1)). The vehicles in the city
center chose arterial roads such as Jiefang Avenue and Joy Avenue. For customer
points at the city’s edge area, the vehicles are affected by road speed during distribu-
tion. The vehicles chose the motorway (Wuhan Fourth Ring Road) and arterial road
(Gaoxin Avenue) for distribution as much as possible (Figure 3(A2)). For the cross-dis-
trict customer points, the vehicle mainly selected the Wuhan Beltway to deliver to the
customer points far from the distribution center (Figure 3(A3)). In addition, SA-SSA

Table 3. Comparison of results of different optimization algorithms: simulated annealing (SA),
sparrow search algorithm (SSA), genetic algorithm (GA), ant colony algorithm (ACO), and the
hybrid sparrow search algorithm (SA-SSA).
Algorithms Optimal solution/km Operation time/s

SA 5317.845 ± 108.51 (þ17.12%) 936.14 ± 14.34 (þ14.05%)
SSA 5415.927 ± 110.88 (þ18.62%) 749.52 ± 11.06 (�7.35%)
GA 5168.396 ± 106.25 (þ14.72%) 793.76 ± 15.56 (�1.37%)
ACO 3952.983 ± 97.36 (�11.50%) 85291.38 ± 469.65 (þ99.06%)
Proposed SA-SSA 4407.619 ± 91.74 804.61 ± 12.73

Values in parentheses represent relative differences compared to SA-SSA.
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prefers to concentrate on serving customer points around one logistics centres. It is
less likely that one distribution vehicle departs from one logistics centre but serves
the customers around another logistics center. Therefore, customer points show spatial
aggregation at the logistics centre. In summary, the SA-SSA reduces the vehicle distri-
bution time by considering the influence of vehicle speed and guiding vehicles to
choose highways, expressways and main roads for distribution.

Compared with other algorithms, the SSA-SA algorithm allowed the logistics centre
to reasonably choose the demand point of the service. For the city with a large area
and complex consumer demands, the proposed SSA-SA could divide the large area
into small regions serviced by different logistic centres, efficiently carrying out logistics
transportation in an extensive range. However, other algorithms for logistical distribu-
tion paths may result in unreasonable storage and distribution. For example, some
vehicles may depart from one warehouse and travel to deliver to a customer point
near another warehouse (Figure 3(B1,C3,D3,E2)). This can lead to increased distribution
cost.

5.2. Reliability interpretation and analysis for two scenarios

To verify the performance of SSA-SA for path optimization in real urban scenarios, the
set of optimized distribution paths using the SSA-SA algorithm considering road class
and without considering road class is shown in Figure 4. The results show that the dis-
tribution of logistics routes optimized by the SSA-SA algorithm was reasonable. The
shipping routes departing from the same distribution centres had significant spatial
aggregation. As is shown in Figure 3, the routes of different colours were sent from
different distribution centres. The distribution of the same colour paths was generally

Figure 3. Three examples (A,B,C) of the multi-depot logistic optimization results for five models:
(1) Proposed SSA-SA, (2) ACO, (3) GA, (4) SA, (5) SSA.
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more concentrated and distributed in a certain range around the corresponding distri-
bution centres.

In addition, the path optimization results of the proposed algorithm consider the
effect of vehicle speed on the optimization results. The optimization results varied for
logistics scheduling under different demands. Considering the road level (Figure 4(A)),
the vehicle distribution and return to the warehouse prioritized the high-speed road.
Without considering the road level (Figure 4(B)), the vehicles were more likely to
choose secondary roads, tertiary roads, and other paths with shorter distances for
distribution.

The optimization results in two demands were further quantitatively analyzed. We
calculate the distance traveled on the different classes of roads through which the
logistics distribution path passes. The analysis was carried out from two perspectives:
based on individual customer points and based on the delivery vehicles.

First, we analyzed the optimization results based on 1000 customer points (Figure
5(A)). Assuming there is a customer point i, the path from the previous customer point
i-1 to i is considered the distribution path for customer point i. We calculate the road
class of the distribution path for each customer point. Figure 5(B) shows that, on

Figure 4. Overall path distribution map of logistics scheduling optimization in Wuhan under two
demands (A) considering road class (B) without considering road class. Different colours represent
different delivery routes.

16 Y. YAO ET AL.



average, the customer point-based distribution path includes 46.85 and 38.60% of
motorway and trunk when road class is considered. In comparison, the average per-
centage of roads passing through the two types of roads without considering road
class is 19.30 and 24.83%, respectively. Furthermore, when road class is considered,
only an average of 14.56% pass through the other three lower grades of roads. In con-
trast, 55.86% of customer points are delivered via low-grade roads when road classes
are not taken into account, which is 3.84 times more than when road grades are taken
into account.

Second, we counted the proportion of the total length of different road classes that
each delivery vehicle passes through, as shown in Figure 5(B). The number of vehicles
to be delivered is automatically optimized by the algorithm. With 55.43 and 33.64% of
motorway roads and trunk roads, respectively, when road class is considered, the dis-
tribution path passes through an average of just 10.92% of low grade roads. In con-
trast, when road class is not considered, an average of 23.24 and 25.19% of motorway
roads and trunk roads are passed, with an average of 51.57% passing through low-
grade roads. Figure 6 shows the distances and proportions of road grades for all logis-
tics distribution routes for both scenarios. The results show that all delivery vehicles
are mainly via motorway (red line) when road class is considered. When road class is
not considered, the delivery vehicle tends to go through the trunk and arterial roads.

5.3. Parameters sensitivity analysis

In the SSA-SA algorithm, when the initial temperature T and cooling speed were large
enough, the maximum number of iterations itermax, the population N, and the finding
ratio PD had some influence on the calculation results. We performed the sensitivity
analysis for these three parameters. Thirty optimization experiments were performed
at each parameter condition.

Tables 4–6 show the optimization result and the corresponding standard deviation,
including the average shortest shipping distance and average computation time. It
can be seen from Table 4 that the larger N is, the better the quality of logistics opti-
mization. This is because a larger N can be to increase the search capability of the
algorithm and help avoid getting trapped in a local optimum

As shown in Table 5, when N and PD took specific values, the average shortest dis-
tribution path decreased significantly as the itermax value increased. However, the time

Figure 5. Proportion of logistics distribution routes passing through different road classes in two
contexts: (A) based on each customer point; (B) based on each distribution route.
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consumption also increased significantly, and the standard deviation value of the solu-
tion time became significantly larger. As can be seen from Table 6, the optimal solu-
tion and solution time did not change significantly as the PD value of the discoverer
increased, but the optimization results were more desirable when the PD value was

Figure 6. Distance (A,C) and proportion (B,D) of each distribution vehicle’s distribution route
through different classes of roads: (A,B) without consideration of road class; (C,D) with consider-
ation of road class.

Table 4. Experimental results of different parameter N:
itermax PD N Optimal solution/km Operation time/s

1000 0.7 20 4693.874 ± 90.98 671.68 ± 10.51
1000 0.7 50 4407.619 ± 91.74 804.61 ± 12.73
1000 0.7 80 4352.736 ± 88.14 986.26 ± 13.85
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chosen reasonably. The results illustrate that the optimization results of the SSA-SA
algorithm were most affected by the values of itermax and N: The proposed algorithm
can have high efficiency and consider both distribution cost and computation time
with the appropriate combination of parameters. In conclusion, the sensitivity analysis
results indicate the necessity of choosing the proper parameters when using SA-SSA
for logistics optimization.

5.4. Simulation experiment result

5.4.1. Individual-scale simulation result
Network efficiency characterizes how easy it is for the warehouse to serve a particular
customer point. Results show that SA-SSA can guarantee the optimal solution when
serving customer points of any network efficiency level (Figure 7(A)). When the net-
work efficiency of the customer point is higher, i.e., closer to the warehouse, the distri-
bution distance of SA is longer. In particular, in the case of high-density sampling, the
distribution distance of SA improves by 2.66%, the path of SSA improves by 0.09%,
and the path of SA-SSA improves by 0.57% when serving higher network efficiency
customers. In the case of low-density sampling, the distribution path of SA improves
by 5.05%, the path of SSA decreases by 0.75%, and the path of SA-SSA improves by
2.29% when serving customers with higher network efficiency.

Table 5. Experimental results of different parameter. itermax.
itermax PD N Optimal solution/km Operation time/s

500 0.7 50 4584.327 ± 98.27 483.15 ± 9.62
1000 0.7 50 4407.619 ± 91.74 804.61 ± 12.73
1500 0.7 50 4361.258 ± 92.80 1357.82 ± 22.54
2000 0.7 50 4218.493 ± 90.38 1546.76 ± 23.08

Table 6. Experimental results of different parameter PD:
itermax PD N Optimal solution/km Operation time/s

1000 0.6 50 4486.239 ± 94.43 791.32 ± 10.66
1000 0.7 50 4407.619 ± 91.74 804.61 ± 12.73
1000 0.8 50 4389.394 ± 93.52 769.03 ± 11.85

Figure 7. (A) Individual-scale simulation results. Logistics optimization results for customer groups
in different levels of network efficiency. (B) Local-scale simulation results. Optimization results for
customer groups in different levels of closeness centrality.
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The results reveal that it is challenging for the optimization algorithm to achieve a
reasonable spatial division in multi-warehouse logistics distribution. Specifically, there
is the situation that customer points near a specific warehouse are distributed by
vehicles from another warehouse, leading to an increase in distribution cost. This
problem also affects the performance of SA-SSA, increasing its distribution path dis-
tance. However, when the network efficiency increases, the distribution path of SSA
decreases (0.75%, low-density sampling) or only slightly increases (0.09%, high-density
sampling). This indicates that SSA can consider the spatial partitioning problem of the
multi-warehouse logistics task. SA-SSA has a partial improvement in this problem due
to the introduction of SSA. The algorithm of SA-SSA do not show a similar degree of
distribution efficiency degradation as SA when serving customer points around the
warehouse.

5.4.2. Local-scale simulation result
Closeness centrality can characterize the proximity between a certain customer point
and all other customer points in the urban road network. Results show that in the
case of high-density sampling (Figure 7(B)), SA-SSA reduced the distribution distance
by 71.41 km for customer points serving high closeness centrality (3511.02 km) than
those serving low closeness centrality (3582.43 km). It indicates that a customer point
is more likely to be selected by SA-SSA when it is closer to other customer points,
which leads to high-quality distribution routes.

In contrast, the effect of closeness centrality of customers on SA is small. In the
same situation, the distribution distance optimized by SA and SSA in serving high-
closeness centrality customer points shrinks by 39.63 and 35.40 km, almost half the
size of SA-SSA. In summary, results show that when the customer point has high
closeness centrality, it will be preferred by SA-SSA, resulting in a better solution and
lower cost.

5.4.3. Global-scale simulation result
Figure 8(A) shows the spatial clustering results that all customer points were divided
into four clusters. SA-SSA had the best optimization results among all four clusters in
terms of the distribution distance (Figure 8(B)). Among them, the distance optimized

Figure 8. (A) Spatial clustering results of customer points based on spectral clustering and (B)
logistics optimization results for customers in different spatial clusters.
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by SA-SSA are 2.05 and 2.25% shorter than those of SSA in clusters 1 and 3,
respectively.

In addition, results show that in a sparse urban road network, the logistics optimiza-
tion algorithm is more likely to fall into a local optimum, especially for SA In the
northeast suburb of Wuhan (cluster 1, red dots), the road network is sparse and the
distribution of customer points is more dispersed, and the local optimum problem of
logistics distribution algorithm is very significant. In addition, the logistics distribution
distance of SA is 7.12% higher than that of SSA, and 9.31% higher than that of SA-
SSA. In the southern suburb of Wuhan city (cluster 2), the logistics distribution dis-
tance of SA is 5.58 and 5.74% higher than SSA and SA-SSA, respectively. With such a
sparse urban road network, it is difficult for SA to find a high-quality distribution path.
At the same time, SSA can effectively search for high-quality paths and greatly reduce
the distribution distance compared to SA. In the urban centre area (clusters 3 and 4),
the urban road network is tighter, and the local optimum problem of the logistics
optimization algorithm is relatively minor compared with the suburban area.

In conclusion, spatially sparse road networks challenge logistics optimization algo-
rithms to find high-quality solutions and thus make them fall into the local optimum
problem. By combining SSA with SA, the SA-SSA can effectively cope with logistics dis-
tribution tasks under sparse road networks (e.g., suburban areas), significantly improve
distribution efficiency and reduce costs.

6. Discussion

6.1. Interpretation of findings

As a wayfinding problem, logistics optimization is a classic application of GIS. In a
complex urban road network, various spatial features and spatial relationships
between customer points and warehouse locations affect the performance of logistics
optimization algorithms. In addition, the increasing customer demand also challenges
the efficiency of logistics optimization algorithms (Laporte 2009, Yao et al. 2018).
However, few studies are oriented to real urban logistics shipping scenarios, ignoring
the increasingly complex road networks and growing customer demands in large cit-
ies. This study introduced the simulated annealing algorithm into SSA and constructed
a hybrid heuristic algorithm (SA-SSA) to address this problem. The logistics optimiza-
tion was performed for four logistical warehouses and 1,000 customer points in
Wuhan. The results show that the proposed SSA-SA algorithm can efficiently solve the
large-scale urban logistics optimization problem.

Compared with classical heuristics such as SA, ACO, and GA, the SSA-SA algorithm
had the best performance in solving urban logistics problems. Compared with the
SSA, the SSA-SA algorithm reduced the minimum delivery distance by 18.62% and
completed the delivery in 13.40minutes (804.61s) on average. It can consider complex
constraints in the real urban logistics scenario, such as urban roads and multi-bin dis-
tribution. The theoretical innovation of SA-SSA is to combine the advantages of the
SSA with the SA. The sparrow search algorithm has greater potential for large-scale
logistics optimization, and can achieve acceptable optimization results in a short time.
While the SA has a greater dependence on the initial solution, a good initial solution
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can improve the optimization efficiency. SA-SSA combines the complementary advan-
tages of SSA’s fast solving capability and avoids getting stuck at the local optimum of
SA. In this way, the SSA-SA can balance the time and cost requirements of urban logis-
tics optimization, thus having the greater potential to solve large-scale logistics opti-
mization problems in cities.

The experimental results in Wuhan city prove the effectiveness of the proposed
algorithm in solving logistical optimization problems. The interpretable analysis dem-
onstrates that the service points of each logistic centre show spatial aggregation using
the SSA-SA algorithm. Without using other optimization strategies, the SSA-SA algo-
rithm can spontaneously perform partitioned distribution services for large-scale cus-
tomer points, making the vehicles serve small-scale logistics distribution and more
conducive to setting logistics service sites. In small-scale distribution, the proposed
algorithm can conduct distribution with less cross-bridge, effectively avoiding cross-
regional large-scale distribution and thus reducing the overall logistics cost.

The proposed SSA-SA algorithm can efficiently solve the large-scale multi-depot
vehicle routing problems for one thousand customers within 20minutes, which has
excellent potential for solving practical optimization problems. In this study, it is found
that the selection of parameters itermax and N had a great influence on the perform-
ance of the SSA-SA algorithm. The results of parameter sensitivity analysis show that
the parameter itermax affected the global optimal solution of the algorithm. When the
parameter itermax increased, the optimal solution improved significantly, but the time
overhead of the algorithm also increased. In future research, coupling our previous
proposed high-performance spatially intelligent computing framework (Laure 2001)
can be considered to achieve real-time mega-city logistics scheduling performance.

We conducted three simulation experiments at different scales, which were used to
explore the influence of spatial elements on logistics optimization algorithms. The
results show that it is still difficult for the logistics optimization algorithm to achieve
good spatial partitioning in a multi-warehouse logistics distribution scenario.
Specifically, there is an unreasonable problem that customer points near a particular
warehouse are distributed by vehicles from another warehouse, leading to an increase
in distribution cost. Our proposed SA-SSA can partially solve this problem, but further
improvement is still needed. In addition, the proximity of a customer point to other
customers in the road network affects the performance of the algorithm. When a cus-
tomer point is more accessible in the road network, it will be preferred by our pro-
posed SA-SSA, thus reducing the distance of the whole distribution path. Finally, the
sparse road network and more dispersed distribution of customer points make it diffi-
cult for the logistics optimization algorithm to find high-quality solutions and thus fall
into the local optimum problem. Our proposed SA-SSA can greatly improve distribu-
tion efficiency and reduce costs in areas with sparse road networks.

The computational efficiency of the optimization algorithm is essential for applica-
tions in large-scale logistics. The algorithm complexity affects the performance as well
as the applicability of the logistics optimization algorithm in practical application scen-
arios. In solving logistics optimization problems, the time complexity of the exact algo-
rithm is O (d!) (d is the number of customer points). In small-scale urban logistics
optimization problems, exact algorithms are often used. In the case of large-scale
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logistics optimization, the actual complexity is astronomical, and it is impossible to
obtain results in a limited time. Therefore, we choose a heuristic algorithm to solve
the large-scale logistics optimization problem.

Our results show that the shortest path of ACO is lower than that of SA-SSA, but its
computation time is too long and, thus, difficult to be applied in practical logistics dis-
tribution. The time complexity of the ACO is O (d2). In contrast, the time complexity of
its SSA is O (dþ Klog(K)) (K is the number of sparrows). The time complexity of the SA
is O (dþ K). The time complexity of the SA-SSA is O (dþ Klog(K)). The ACO, therefore,
requires an iterative selection of clients compared to the sparrow hybrid algorithm,
which also results in higher time consumption.

6.2. The application of SA-SSA in a complex urban system

The city can be considered a complex system with high uncertainty (Iturriza et al.
2020). In addition, some large-scale urban logistics tasks, such as postal delivery or
garbage collection, often require servicing a large number of customers (e.g. over
1000). These two factors pose the challenge for logistics optimization algorithms.

This research is oriented to the application scenario of mega-cities and large-scale
urban logistics, conducting large-scale pathfinding optimization in a real scenario
using GIS technology. We developed an algorithm to solve the logistics route opti-
mization problem efficiently. Some previous studies improve the heuristic algorithm to
optimize logistics (Yang et al. 2015, Xue and Cao 2016, Tu et al. 2017). However, these
theoretical studies usually cannot balance shipping cost and efficiency when facing
highly complex road networks and huge customer demand in practical application
scenarios. Dedicated to the engineering implementation of logistics optimization, this
study has the following main contributions. First, to apply to the most realistic urban
logistics distribution scenarios, the proposed algorithm considers complex constraints
such as road class, multi-bin distribution and vehicle capacity limits (Cattaruzza et al.
2017).

Second, the real-time changing urban traffic can make the logistics optimization
results uncertain, which is a tremendous challenge for logistics optimization. However,
the related research is still in the gap. We build a customer inter-node dataset based
on a transportation network graph, balancing transportation efficiency and cost. The
edge weights W of the weighted graph can be set as traffic flow, such as real-time
traffic data, or traffic flow predicted by taxi data. Therefore, by combining the dynamic
traffic flow data, the SSA-SA model can dynamically select the path with a shorter
delivery time for delivery service, thus optimizing real-time and dynamic mega-city
logistics scheduling.

Third, we applied the heuristic algorithm for the first time to optimize large-scale
urban logistics considering road class. The results show that the proposed algorithm
has a strong application background and can provide a reference for practical urban
logistics planning. When the SSA-SA algorithm provides distribution service to dense
customer points in the city center, the planned path selects the main city roads and
secondary roads for distribution.
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6.3. Limitations and future works

There are still some shortcomings in this study. First, the factors affecting urban logis-
tics scheduling are complex, and some are dynamic. However, only three urban con-
straints are considered in this study to solve the urban logistics optimization problem:
customer point distribution volume, multiple warehouse centres, and complex road
networks. In subsequent studies, constraints such as real-time traffic conditions, carbon
emissions, and customer service time windows can be considered to solve urban logis-
tics optimization problems in different scenarios. In addition, the primary objective of
this work is to design a generalized optimization algorithm in a basic multi-warehouse
logistics optimization scenario. Therefore more complex logistics optimization prob-
lems are not considered. For example, we do not consider the constraints on the num-
ber of vehicles and the subloop elimination problem. In subsequent studies, we will
explore the optimization performance of SA-SSA under more complex constraints.

Second, as cities have heterogeneity in scale and structure, different types of cities
need to be selected to test the validity of SA-SSA. The research context of this paper
is that the issue of efficiency in logistics and distribution is being challenged with the
accelerating urbanization process. Therefore, we have chosen a typical fast-growing
mega-city for our experiment. We believe logistics and distribution problems are the
most challenging and problematic in such a city. Based on this principle, we chose
Wuhan as our study area. In future research, we will try to select several cities of dif-
ferent types and sizes to test the robustness of our proposed SA-SSA model.

Third, reinforcement learning has become one of the popular methods for solving
combinatorial optimization problems. Since urban logistics path optimization is com-
plex and usually large-scale, the exploration strategies commonly used in reinforce-
ment learning often fail. In subsequent studies, we will introduce deep reinforcement
learning for heuristic search operators to speed up the solution and improve the qual-
ity of the solution.

7. Conclusions

For large-scale urban logistics optimization tasks, traditional heuristics cannot provide
high-quality vehicle path planning solutions quickly. This study proposes a hybrid
heuristic algorithm based on the SSA for effectively solving the multi-depot vehicle
routing problems considering complex road networks. Experiments on large-scale
logistics optimization in Wuhan city show that the proposed SA-SSA algorithm can
efficiently provide high-quality vehicle path solutions with stable performance, which
is suitable for large-scale urban logistics optimization. The SA-SSA can provide vehicle
path design services for relevant logistics enterprises, thus improving logistics effi-
ciency, reducing logistics costs and realizing logistics intelligence. In addition, this
study explored the impact of spatial characteristics of cities as well as customer points
on logistics optimization algorithms. However, this study still has some limitations,
such as the lack of consideration of the real-time traffic condition. In the future, we
will apply the proposed method in different types of cities and try to introduce deep
reinforcement learning to improve the efficiency of logistics route optimization.
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